INDUCED INNOVATION AND INTERNATIONAL ENVIRONMENTAL AGREEMENTS: EVIDENCE FROM THE OZONE REGIME ONLINE SUPPLEMENTARY MATERIAL

EUGENIE DUGOUA*

April 14, 2021

Contents

A	Other Useful Background Information	3
B	Cleaning Procedures and Topic Modelling	8
	B1 Cleaning procedure	8
	1 Patents	8
	2 Articles	8
	3 Meta-Data	9
	B2 Topic Modeling	10
С	Difference-in-Differences	16
D	Synthetic Control Method	24
	D1 Theoretical Foundations	24
	D2 Figures and Tables	24
Е	Others Figures and Tables	32
F	Theoretical Model	38

List of Figures

A1	Molecular Structure of CFCs, HCFCs and HFCs	3
B1	Schematic Explanation of the Methodology	10
B2	Topic Coherence Scores	11

^{*}Dugoua: London School of Economics, Houghton St, Holborn, London WC2A 2AE. Email: e.dugoua@lse.ac.uk.

B3	Scatterplot of Topics Proportion and Count for Patents.	14
B4	Scatterplot of Topics Proportion and Count for Articles	15
C1	Document Counts for Individual CFC Substitutes	16
C2	Top Level Patent Codes for CFC Substitutes and HAPs	17
C3	Patent Counts for Each HAP and for the Average CFC Substitute	17
C4	Articles Counts for Each HAP and for the Average CFC Substitute	18
C5	Time Series of Citation- and Occurrence-Weighted Counts	20
C6	Robustness Check: Counts with Several Thresholds of Molecule Occurrences	21
C7	Histogram of Counts in DiD sample	22
D1	Article Counts for CFC Substitute, Individually and Aggregated	25
D2	Robustness Check for Patents: Synthetic Control Method with Counts Weighted	
	by Occurrences and Citations	29
D3	Robustness Check for Patents: Synthetic Control Method with Counts Weighted	
	by Occurrences and Citations	30
D4	Synthetic Control Method Graphs for CFC Substitutes Assuming Anticipation	31
E1	Patent Counts by Country Before and After 1987	33
E2	Most Frequent Codes for Patents Mentioning CFC Susbtitutes Before and After 1987	36
E3	Patenting Before 1987 as a Predictor to Patenting After 1987	37
F1	Gains from Cooperation	39
F2	Gains from Cooperation and Induced Innovation	39

List of Tables

A1	Montreal Protocol Phaseout Schedules	4
A2	List Molecules in Each Treatment Group	5
A3	Details about CFC Substitutes	6
A4	List of Substitutes and Their Possible Names	7
B1	Top Twenty Words for Topics in Patents	12
B2	Top Twenty Words for Topics in Articles	13
C1	Pre-Period Balance Table Between CFC Substitutes and HAPs	19
C2	Difference-in-Differences with Triadic Patents Only	22
C3	Difference-in-Differences with Zero-Inflated Negative Binomial Specifications	23
D1	Synthetic Control Method Extrapolation Check	26
D2	HAPs Contributing to the Synthetic Control	
D3	Variable Weights Used in the Construction of the Synthetic Control	28
E1	Five Most Common Patent Codes for Patents Mentioning CFC Substitutes	32
E2	Titles of the Five Most Cited Patents Mentioning CFC Substitutes	
E3	Titles of the Five Most Cited Articles Mentioning CFC Substitutes	33
E4	Summary Statistics for Documents Mentioning CFC substitutes	34
E5	Summary Statistics for Documents Mentioning CFC Substitutes Before and After	
	1987	35

A Other Useful Background Information

Figure A1: Molecular Structure of CFCs, HCFCs and HFCs

Note: CFC stands for chlorofluorocarbon, i.e., a molecule entirely made of carbon, chlorine, and fluorine atoms. When a hydrogen atom substitutes a chlorine atom in CFC-12, we get HCFC-22, or when, instead, a methyl group substitutes a chlorine atom, we obtain HCFC-142b. Here "HCFC" stands for hydro-chlorofluorocarbons. When hydrogens substitute all the chlorine atoms, the compounds are known as hydro-fluorocarbons (HFCs). For example, when hydrogens replace the two chlorine atoms in CFC-12, we get HFC-32.

Chemicals	1987 Montreal Protocol	1990 London Revisions	1992 Copenhagen Revi- sions	1995 Vienna Revisions	1995 Vienna (article 5)
Annex A/I Chlorofluorocarbons 11,12,113,114,115	baseline 1986 freeze 1989 20% 1993 50% 1998	baseline 1986 freeze 1989 50% 1995 85% 1997	baseline 1986 freeze 1989 75% 1994 100% 1996	no change	baseline 1995/97 freeze 1999 50% 2005 85%
Annex A/II Halons 1211, 1301, 2402	baseline 1986 freeze 1992	baseline 1986 freeze 1992 50% 1995 100% 2000	baseline 1986 freeze 1992 100% 1994	no change	baseline 1995/97 freeze 2002 50% 2005 100%
Annex B/I Other CFCs 10 chemicals	no controls	baseline 1989 20% 1993 85% 1997 100% 2000	baseline 1989 20% 1993 75% 1994 100% 1996	no change	baseline 1998/2000 20% 2003 85% 2007 100%
Annex B/II Carbon tetrachloride		baseline 1989 85% 1995 100% 2000	baseline 1989 85% 1995 100% 1996	no change	baseline 1998/2000 85% 2005 100% 2010
Annex B/III Methyl chloroform		baseline 1989 freeze 1993 30% 1995 70% 2000	baseline 1989 freeze 1993 50% 1994 100% 1996	no change	baseline 1998/2000 freeze 2013 30% 2005 70%
Annex C/I Hydrochlorofluorocarbons 40 chemicals	no controls	mandatory re-porting nonbiding reso-lution on pase-out: 2020 if pos	baseline 1989 freeze 1996 35% 2004 65% 2010 90% 201	baseline 1989 one change	baseline 2015 freeze 2016 100% 2040
Annex C/II Hydrobromofluorocarbons 34 chemicals	no controls	no controls	100% 1996	no change	100% 1996
Annex E Methyl bromide	no controls	no controls	baseline 1991 freeze 1995	baseline 1991 freeze 1995 25% 2001 50% 2005 100% 2010	baseline 1995/98 freeze 2002

Table A1: Montreal Protocol Phaseout Schedules

Note: Source: Benedick (2009)

Table A2: List Molecules in Each Treatment Group

CFC Substitutes	HCFC 22, HCFC 123, HCFC 124, HCFC 125, HCFC 141b, HCFC 142b, HCFC 225ca, HCFC 225cb, HFC 134a, HFC 143a, HFC 152a, HFC 245fa, HFC 32, HFC 365mfc
Annex A	CFC 11, CFC 12, CFC 113, CFC 114, CFC 115, HALON 1211, HALON 1301, HALON 2402
Annex B	CFC 13, CFC 111, CFC 112, CFC 211, CFC 212, CFC 213, CFC 214, CFC 215, CFC 216, CFC 217, Carbon tetrachloride, Methyl chloroform
HAPs	Acetaldehyde, Acetamide, Acetonitrile, Acetophenone, 2-Acetylaminofluorene, Acrolein, Acrylamide, Acrylic acid, Acrylonitrile, Allyl chloride, 4-Aminobiphenyl, Aniline, o- Anisidine, Asbestos, Benzene, Benzidine, Benzotrichloride, Benzyl chloride, Biphenyl, Bis(2-ethylhexyl)phthalate (DEHP), Bis(chloromethyl)ether, Bromoform, 1,3-Butadiene, Calcium cyanamide, Caprolactam, Captan, Carbaryl, Carbon disulfide, Carbonyl sulfide, Catechol, Chloramben, Chlordane, Chlorine, Chloroacetic acid, 2-Chloroacetophenone, Chlorobenzene, Chlorobenzilate, Chloroform, Chloromethyl methyl ether, Chloroprene, Cresols/Cresylic acid, o-Cresol, m-Cresol, p-Cresol, Cumene, 2,4-D, salts and es- ters, DDE, Diazomethane, Dibenzofurans, 1,2-Dibromo-3-chloropropane, Dibutylph- thalate, 1,4-Dichlorobenzene, 3,3-Dichlorobenzidene, Dichloroethyl ether ether), 1,3- Dichloropropene, Dichlorvos, Diethanolamine, N,N-Dimethyl benzidine, Dimethyl car- bamoyl chloride, Dimethyl aminoazobenzene, 3,3'-Dinmethyl benzidine, Dimethyl car- bamoyl chloride, Dimethyl formamide, 1,1-Dimethyl hydrazine, Dimethyl sulfate, 4,6-Dinitro-o-cresol, and salts, 2,4-Dinitrophenol, 2,4-Dinitrotoluene, 1,4-Dioxane, 1,2-Diphenylhydrazine, Epichlorohydrin, 1,2-Epoxybutane, Ethyl acrylate, Ethyl benzene, Ethyl carbamate, Ethyl chloride, Ethylene dibromide, Ethylene dichlo- ride, Ethylene glycol, Ethylene imine, Ethylene oxide, Ethylene, Hourae, Ethyl- dene dichloride, Formaldehyde, Heptachlor, Hexachlorobenzene, Hexachlorobutadiene, Hexachlorocyclopentadiene, Hexachlorotethane, Hexamethylene-1,6-diisocyanate, Hexam- ethylphosphoramide, Hexane, Hydrazine, Hydrochloric acid, Hydrogen fluoride, Hy- drogen sulfide, Hydroquinone, Isophorone, Lindane, Maleic anhydride, Methanol, Methoxychlor, Methyl bromide, Methyl chloride, Methyl isobutyl ketone, Methyl methacry- late, Methyl tert butyl ether, 4,4-Methylenedianiline, Naphthalene, Nitroben- zene, 4-Nitrobiphenyl, 4-Nitrophenol, 2-Nitropopane, N-Nitroso-N-methylurea, N- Nitrosodimethylamine, N-Nitrosomorpholine, Parathion, Penta

Substitute	PAFT	AFEAS	Substitute for	Notes
HCFC-22	No, already marketed, toxicology known	Yes	Included in Annex C. CFC-11, CFC-12 in foams	cheapest, fastest substitute, already at large scale production at the end of 1986 but due to toxicity concerns, not appropriate for aerosol use. FDA approved it for foams in 1988 for fast foods and for grocery display packaging.
HCFC-142b	No, already marketed, toxicology known	Yes	CFC-11, CFC-12 but not ideal	Included in Annex C. Considered because already at small scale production in 1986 but their thermodynamic properties are very different and would have required changes in equipment and process. DuPont 1988 process for coproduction of HCFC 141b and 142b
HFC-152a	No, already marketed, toxicology known	Yes	CFC-11, CFC-12 but not ideal	Considered because already at small scale production in 1986 but their thermodynamic properties are very different and would have required changes in equipment and process.
HCFC-123	Yes	Yes	CFC-11 in refrigeration	Included in Annex C. Vapor pressure similar to CFC-11 and CFC-12 implied no need to change equipment. However no commercial experience. estimated at \$1.5-2/lb in 1986. DuPont patent commercial synthesis route 1988. large plant in 1990 for production. Still some toxicity concerns.
HFC-134a	Yes	Yes	CFC-12 in refrigeration (car AC)	vapor pressure similar to CFC-11 and CFC-12 implied no need to change equipment. However no commercial experience. estimated at \$3/lb in 1986. oct 1990 first commercial plant ICI, then DuPont. Both DuPont and ICI announced important catalyst breakthroughs in 1992, which roughly doubled their capacity.
HCFC-141b	Yes	Yes	CFC-11 in foams	Included in Annex C. Vapor pressure similar to CFC-11 and CFC-12 implied no need to change equipment. However no commercial experience. DuPont 1988 process for coproduction of HCFC 141b and 142b. Appeared to be the most promising alternative initially (1987-1988) but in late 1988 its ODP was found much higher than thought (about 10 percent). EPA banned its use as a solvent in 1993. required phase out of production by 2003. Moderate inflammability.
HCFC-124	Yes	Yes	CFC-114 in refrigeration and sterilization	Included in Annex C. Less suitable properties but could be used in blends
HCFC-125	Yes	Yes	CFC-115 in refrigeration and sterilization	less suitable properties but could be used in blends
HCFC-225ca	No, second rank candidate	Yes		Included in Annex C.
HCFC-225cb	No, second rank candidate	Yes		Included in Annex C.
HFC-32	No, second rank candidate	Yes	refrigeration	considered in blends for refrigeration. Inflammability and compressor discharge made it problematic alone. Both DuPont and ICI opened HFC-32 plants in the summer of 1992. by 1993, DuPont, Allied, ICI, and Atochem were all marketing various patented refrigerant blends
HFC-143a	No, second rank candidate	Yes	CFC-12 in refrigeration	less suitable properties but could be used in blends
HFC-245fa	No	No	CFC-11, HCFC-141b and HCFC-142b in foams	
HFC-365mfc	No	No	CFC-11, HCFC-141b and HCFC-142b in foams	

Table A3: Details about CFC Substitutes

Note: Information collected from (Parson 2003) and (Benedick 2009). Note: the cost of CFC-12 in 1986 was \$0.65/lb.

HCFC 22 Chlorodifluoromethane Algeon 22 Algofrene 22 Algofrene 6 Arcton 22 Arcton 4 CFC 22 Daiflon 22 Difluorochloromethane Difluoromethyl chloride Difluoromonochloromethane Dymel 22 Electro-CF 22 F 22 (halocarbon) FC 22 FC 22 (halocarbon) FKW 22 Flugene 22 Forane 22 Freon 22 Freon R 22 Frigen 22 Fron 22 Genetron 22 HFA 22 Halon 22 Haltron 22 Isceon 22 Isotron 22 Khladon 22 Korfron 22 Monochlorodifluoromethane Propellant 22 R 22 Refrigerant 22 Refrigerant R 22 Solkane 22 Ucon 22 HCFC 123 2,2-Dichloro-1,1,1-trifluoroethane 1,1,1-Trifluoro-2,2-dichloroethane 1,1,1-Trifluorodichloroethane 1,1-Dichloro-2,2,2-trifluoroethane CFC 123 Dichloro(trifluoromethyl)methane FC 123

Table A4: List of Substitutes and Their Possible Names

Khladon 125 Pentafluoroethane R 125 HCFC 141b 1,1-Dichloro-1-fluoroethane 1-Fluoro-1,1-dichloroethane 141B Asahiklin AK 141b CFC 141b CG 141b Daiflon 141b Dichlorofluoroethane F 141b Forane 141b Forane DGX Fron 141b Genesolv 2000 Genetron 141b HFA 141b HFC 141b Isotron 141b Khladon 141b R 141b RC 14 Refrigerant 141b Solkane 141b HCFC 142b 1-Chloro-1,1-difluoroethane 1,1-Difluoro-1-chloroethane CFC 142b Daiflon 142b Dymel 142 F 142b FC 142b FKW 142b Freon 142b Fron 142b Genetron 101 Genetron 142b HFA 142b Propellant 142B R 142b Solkane 142b α -Chloroethylidene fluoride HCFC 152a 1,1-Difluoroethane Algofrene 67 Dymel 152 Dymel 152A Ethylidene fluoride F 152A FC 152a FKW 152a Formacel Z 2 Fron 152a Genetron 152A HFA 152a HFC 152a HFO 152a Propellant 152A R 152a Solkane 152a TG 152a HCFC-225ca 3,3-Dichloro-1,1,1,2,2-pentafluoropropane 1,1,1,2,2-Pentafluoro-3,3-dichloropropane 1,1-Dichloro-2,2,3,3,3-pentafluoropropane Fron 225 R 225b R 225ca HCFC-225cb 1,3-Dichloro-1,1,2,2,3-pentafluoropropane 1,1,2,2,3-Pentafluoro-1,3-dichloropropane AK 225G

AK 225cb Asahiklin AK 225G

HFC 225bc R 225a R 225cb

HCFC 134a 1,1,1,2-Tetrafluoroethane 1,2,2,2-Tetrafluoroethane

AK 134a Arcton 134a Ecolo Ace 134a F 134A FC 134a Forane 134a Freon 134a Fron 134a Genetron 134a HC 134a HFA 134 HFA 134a HFA P134a HFC 134a Halon 134A KLEA 134a Khladon 134a Meforex 134a Norflurane P 134A R 134a RF 134a Refrigerant R 134a SUVA 134a Solkane 134a TG 134a HCFC 143a 1.1.1-Trifluoroethane CFC 143A F 143A FC 143a Freon 143a Fron 143a HCF 143a HFA 143a HFC 143a HFO 143a Methylfluoroform R 143a TG 143a HFC 245fa 1,1,1,3,3-Pentafluoropropane

1,1,3,3,3-Pentafluoropropane 245fa Enovate 245 Enovate 245fa Enovate 3000 Genetron 245fa

HFC 32

Difluoromethane Ecolo Ace 32 F 32 FC 32 Forane 32 Freon 32 Genetron 32 HFA 32 HFO 32 Methylene difluoride R 32 R 32 (refrigerant)

HFC 365mfc 1,1,1,3,3-Pentafluorobutane 2,2,4,4,4-Pentafluorobutane

Forane 365mfc HFC 365 HFO 365mfc R 365 R 365mfc Solkane 365 Solkane 365mfc

F 123 F 123 (halocarbon) Freon 123 Fron 123 HFA 123 Khladon 123 R 123 Solkane 123

HCFC 124

2-Chloro-1,1,1,2-tetrafluoroethane 1,1,1,2-Tetrafluoro-2-chloroethane 1,1,1,2-Tetrafluorochloroethane 1-Chloro-1,2,2,2-tetrafluoroethane CFC 124 F 124 F 124 (halocarbon) FC 124 Freon 124 Fron 124 Khladon 124 R 124

HCFC 125

Ethane, pentafluoro- (6CI,7CI,8CI,9CI) 1,1,1,2,2-Pentafluoroethane 1,1,2,2,2-Pentafluoroethane Ecolo Ace 125 F 125 FC 125 Freon 125 Fron 125 HFA 125 HFC 125 HFO 125

B Cleaning Procedures and Topic Modelling

B1 Cleaning procedure

1 Patents

- Cleaning steps to search and count the number of times a molecule name appear in the text:
 - Lowercase
 - Replace the following punctuation signs by an empty string: , ()
 For example, '3-Amino-2,5-dichlorobenzoic acid' becomes '3amino25dichlorobenzoic acid'
 - Replace any other type of punctuation by a space
- Cleaning steps to transform the text into a list of words (necessary for topic modeling)
 - Normalize hyphenated words
 - Normalize quotation marks
 - Normalize unicode strings
 - Replace any punctuation by a space
 - Lowercase
 - Replace any number by the string 'NUMBER'
 - Use tokenizer algorithm in Python's Spacy to tokenize strings
 - Remove stopwords (list taken from Python's package sklearn (ENGLISH'STOP'WORDS)
 - Remove tokens strictly smaller than five characters
- Build bigram model based on text as a list of words (I use a minimum count of 5 occurrences)
- Transform text into lemmatized ngrams (using Spacy's lemmatizer)
- Build the dictionnary from lemmatized ngrams (filtering no less than in 10 documents and not more than into 60% of the corpus).
- Build LDA models from lemmatized ngrams

2 Articles

The cleaning procedure for articles follow closely the one adopted for patents. However, more specific steps are required. For most articles, the full text downloaded from ScienceDirect is the result of an imperfect conversion of images into machine-encoded text: some words are not well recognized especially when the article contained mathematical symbols and equations. Words are also sometimes not properly separated by space. Additionnaly, the texts typically contain a list of references.

- Detect reference list and remove. I use a simple rule: if the word 'references' is found in the text, and if the word is located towards the end of the document (after 80% of it to be precise), I truncate the document to everything that is before. (This step is done before searching and counting molecule names).
- In addition to removing tokens that are shorter than 5 characters, I also remove tokens that are longer than 15 characters. Although this simple rule may result in dropping important scientific words, it also effectively removes most of the many strings with incoherent combinations of characters.
- Drop non-English articles. Some articles seem not to be written in English. For this reason, I use Google's CLD2 library in Python to detect every document's language, and drop those that are detected with large enough confidence as not being English.

3 Meta-Data

Scopus's meta-data provides the name and geographic localization of authors' affiliations. However, Scopus does not provide information about these organizations. In particular, knowing the share of articles affiliated with public vs. private entities would be interesting. To that aim, I leverage the Global Research Identifier Database¹ (GRID) which provides information about a worldwide collection of organizations associated with academic research. In particular, GRID classifies an entity as one of the following types: education, company, government, facility, nonprofit, health care².

An organization is classified as "education" if it can grant degrees, as "company" if it is a business entity with the aim of gaining profit, as "government" if it is operated mainly by a government, and as "health care" if it is a place that treats patients. Facilities encompass building or facilities researching specific areas and usually containing specific equipment (e.g., a nuclear plant). Nonprofits include charities but also non-governmental research institutes³.

Unfortunately, the name of the organizations and its geographical location are often reported differently in Scopus and GRID. To match as many entities as possible, I first look for exact matches, then for approximate ones using tools such as fuzzy matching in python. Still, many remained unmatched. I then manually match any organization appearing, at least, three times or more in the data. There were about 300 of such organizations.

For patents, the bulk data provided by the UPSTO contains meta-data. Names and addresses of the inventors and assignee are therefore more readily available. I use the country of the assignee, and when the patent has no assignee, I use the country of the inventor. The USPTO data, however, does not classify assignee by type of organization (e.g., company, education or non-profit). The GRID database here is not as useful because most patents originate from businesses; GRID encompasses some for-profit entities with major research activities, but many patentees are in fact small companies unlikely to be listed under GRID.

To match patent assignees to an organization type, I implement a more basic strategy. I leverage the presence of certain tokens in the name of the assignees to infer their type. For example, the

^{1.} https://www.grid.ac/

^{2.} There are two other classifications: "archive" and "other." For more information, see https://www.grid.ac/pages/policies

^{3.} For example, in the USA, the National Academy of Sciences is classified as a non-profit.

"Inc." abbreviation in the name *Flow Vision, Inc.* tells us that it is a for-profit organization. Other such tokens includes "corp.", "co.", "plc", "llc", "limited" or "company", as well as "& cie"⁴. Similarly, I identify organizations containing tokens such as "university" or "school" as being of the "education" type, and those containing tokens such as "govern", "ministr" or "agency" as being of the "government" type. The use of these simple rules helps me match about 36529 out of 45820 assignee names. Out of the 7899 remaining, I manually match those that appear at least ten times in my data (about 200 of them). I leave the rest with no type information.

B2 Topic Modeling

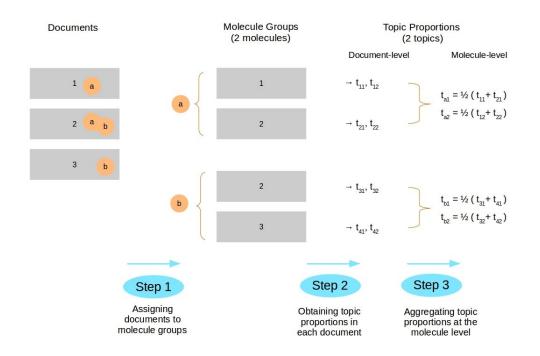


Figure B1: Schematic Explanation of the Methodology

Note: Suppose there are three documents: document 1 and 2 mention molecule 'a' while document 2 and 3 mention molecule 'b'. In step 1, I aggregate documents according to their molecule group. I follow a basic rule that assign any document with at least one mention of a molecule to that molecule's group. In step 2, I use topic modeling to obtain the proportions of topics in each document. t_i , j stands for the proportion of topic j in document i. Finally, in step 3, I create a topic proportion at the molecule level by averaging over all the documents that mention the molecule of interest.

^{4.} In other languages, here are a few of the tokens that I found in the data: "kaisha" or "kk" in Japanese, "spa" in Italian, "gesellschaft" or "gmbh" or "ag" or "kg" in German, "bv" or "nv" in Dutch, "sa" or "sarl" in French, "ab" in Swedish, "oy" in Finnish, "rt" in Hungarian.

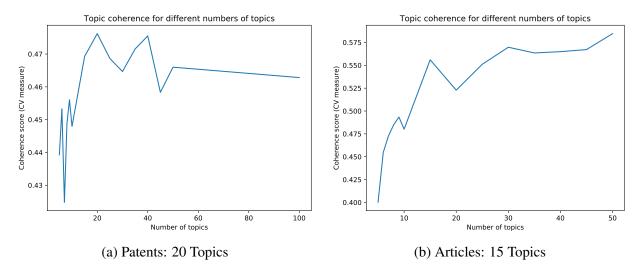


Figure B2: Topic Coherence Scores

Table B1: Top Twenty Words for Topics in Pater
--

Topic		Topi		Topi		Topic		То	pic 5		opic 6	Topi	
Words	Prob	Words	Prob	Words	Prob	Words	Prob	Words	s Prob	Word	s Prob	Words	Prob
	0.0161		0.0084	£	0.0118		0.0147		0.0127	7 formu	la 0.0245	catalyst	0.0262
polymer catalyst	0.0161	metal membrane		formula carbon	0.00118	agent composition						metal	0.0262
carbon	0.0023		0.0082	atom	0.0092	active	0.0064					hydrocarbo	
weight	0.0093		0.0067	substitute	0.0086	weight	0.0062				ent 0.0214	hydrogen	
atom	0.0087	surface	0.0065	amine	0.0077	water	0.0052					water	0.0077
polymerizatio			0.0064	metal	0.0076	solution	0.0050				en 0.0098	liquid	0.0074
metal	0.0065	water	0.0053	ester	0.0070	effect	0.0046		0.0047			carbon	0.0073
composition	n 0.0057	catalyst	0.0052	butyl	0.0070	tissue	0.0044	accord	1 0.0047	7 substitu	te 0.0094	componen	t 0.0068
formula	0.0056		0.0050	solvent	0.0069	formulation						pressure	0.0068
solution	0.0056			ether	0.0067	treatment	0.0039					oxide	0.0063
aromatic	0.0053		0.0042	hydrogen	0.0066	patient	0.0039		ation 0.0046			solvent	0.0062
prepare	0.0053		0.0039	methyl	0.0065	effective	0.0037					phase	0.0059
radical	0.0052		0.0038	catalyst		pharmaceutic						stream	0.0057
range	0.0052		0.0038	weight	0.0060	release	0.0036					range	0.0053
component	0.0051	liquid	0.0037 0.0036	phenyl	0.0060 0.0058	substance	0.0036		t 0.0039 0.0038			reactor	0.0051 0.0049
solvent water		enzyme concentrati		organic		polymer solvent	0.0035				ive 0.0053	weight solution	0.0049
prefer	0.0030	solid	0.0033	acid	0.0053							oxygen	0.0047
molecular	0.0047			agent	0.0053	preparation			0.0037			organic	0.0043
organic	0.0047		0.0032	radical	0.0031	ingredient	0.0032					condition	
organic	0.0039	Tange	0.0052	radicai	0.0040	ingreatent	0.0051	compon	ciit 0.0057	aikyi	0.0049	condition	0.0041
								_		_			
Topio		Topic		Topic		Topic 1		Topic 1		Topic		Topic 1	
Words	Prob	Words	Prob	Words	Prob	Words	Prob	Words	Prob	Words	Prob	Words	Prob
formula	0.0288	layer	0.0265	paper	0.0145	composition	0.0170 ~	mposition	0.0127	water	0.0221	solvent	0.0185
substitute	0.0137	image	0.0200	color	0.0143	weight	0.0129			olution	0.0221	formula	0.0135
hydrogen	0.0112	silver	0.0165	pigment	0.0115		0.0129			nposition		water	0.0078
low	0.0112	color	0.0107	solvent	0.0097	carbon	0.0096			queous	0.0088	methyl	0.0077
methyl	0.0095	halide	0.0105	print	0.0080	alcohol	0.0092			metal	0.0088	solution	0.0069
phenyl	0.0088	light	0.0101	water	0.0068	water	0.0091			agent	0.0082	active	0.0068
amino		photographic		sheet	0.0065	agent	0.0087			weight		polymer	0.0063
represent	0.0075	sensitive	0.0084	agent	0.0063	atom	0.0080	acid	0.0053 p	article	0.0062	ethyl	0.0056
carbon	0.0074	emulsion	0.0083	formula	0.0059	polymer	0.0067	hydrogen	0.0053 s	odium	0.0062 1	hydrogen	0.0053
solvent	0.0072	agent	0.0081	printing	0.0058	ester	0.0066	amino	0.0051	add	0.0050	weight	0.0052
radical	0.0064	represent	0.0079	compositior	0.0057	oxide	0.0065	water	0.0051 s	oluble		omposition	0.0052
atom	0.0063	develop	0.0063	weight	0.0053	detergent	0.0060			rganic	0.0043	agent	0.0050
salt	0.0061	formula	0.0061	organic	0.0049	glycol	0.0059			resin	0.0042	prepare	0.0047
alkoxy	0.0061	element	0.0061	carbon	0.0047	fatty	0.0058		0.0050	solid	0.0041	carry	0.0047
derivative	0.0060	coupler	0.0058	methyl	0.0047	chain	0.0051			urface		chloride	0.0046
prepare	0.0057	charge	0.0053	liquid	0.0045	formula	0.0051			alkali	0.0039	organic	0.0044
agent	0.0056	solution	0.0052	ester	0.0040	prefer	0.0049		0.0046 cond			add	0.0043
optionaccy	0.0056	developer substitute	0.0050 n 0.0049	nicrocapsul metal	0.0036	methyl ethylene	0.0046 0.0045			oxide	0.0038	prefer represent	0.0043 0.0042
ethyl alkyl		ohotosensitiv		aqueous	0.0035	ether	0.0045			range alcium	0.0037	sodium	0.0042
aikyi	0.0050 }	JIIOtosciisiuv	0.0049	aqueous	0.0055	culei	0.00+3	san	0.0045 0	aicium	0.0050	souluili	0.0041
	Topic		Topic			pic 17		pic 18	Topi		Topic		
	Words	Prob	Words	Prob	Words	s Prob	Word	s Prot	o Words	Prob	Words	Prob	
po	lycarbonat	e 0.0101	polymer	0.0229	layer	0.0227	sequen	ice 0.009	94 surface	0.0108	compositio	n 0.0114	
	solution	0.0095	resin	0.0212	substra		cecc			0.0067	weight	0.0106	
	weight	0.0070	weight	0.0193	silicor		protei			0.0062	polyester		
	metal		composition		surfac		plant			0.0057	radical	0.0081	
сс	mposition		copolymer		semicondi		amin			0.0054	formula	0.0079	
	water	0.0050	monomer	0.0119	device	e 0.0091	activit	ty 0.005	53 second	0.0047	componen	t 0.0077	
	alpha	0.0048	vinyl	0.0075	fiber	0.0083	growt	h 0.005	53 sheet	0.0046	polyol	0.0075	
hyc	lroxyphen	yl 0.0048	coating	0.0069	regior		enzyn	ne 0.005	52 pressure	0.0045	glycol	0.0072	
	acid	0.0045	agent	0.0068	oxide		mediu			0.0044	isocyanate		
	polymer		olymerizatio		crysta		cultur			0.0043	agent	0.0065	
	prepare		component		electro		nuclei		39 apparatus		polymer	0.0062	
	atom	0.0041	rubber	0.0058	light			anism 0.003		0.0039	carbon	0.0061	
	sodium	0.0041	acrylate	0.0057	liquid		carbo				polyuretha		
	catalyst	0.0040	property	0.0057	optica		composi			0.0035	atom	0.0060	
	methyl	0.0040	coat	0.0057	second		prefe			0.0035	catalyst	0.0059	
	ester	0.0039	layer	0.0056	metal		acid			0.0034	aromatic	0.0059	
	solvent	0.0039	particle	0.0054	structu		molecu			0.0034	amine	0.0059	
	prefer	0.0038	surface	0.0054	etch	0.0044	strair			0.0033	organic	0.0057	
p	reparation effect	0.0038 0.0037	solvent part	0.0052 0.0051	laser source	0.0040 e 0.0039	formu peptid			0.0032 0.0032	ester molecular	0.0056 r 0.0052	
	enect	0.0057	part	0.0051	source	0.0039	pepud	ic 0.003	o ciement	0.0052	morecular	0.0052	

To	pic 1	Topic	2	Topic 3		Topic 4		Topic 5	
Words	Prob	Words	Prob	Words	Prob	Words	Prob	Words	Prob
compound	0.0162	surface	0.0155	laser	0.0129	gifhttps	0.0351	complex	0.0584
extract	0.0072		0.0096	signal	0.0102	thumbnail	0.0282	ligand	0.0261
structure	0.0068		0.0086	sample	0.0097	downsample	0.0270	metal	0.0187
product	0.0061		0.0075	pulse	0.0092	smlhttps	0.0190	spectra	0.0141
methyl	0.0056		0.0062	radical	0.0092	stripin	0.0175	structure	0.0080
spectrum	0.0050		0.0057	light	0.0067	yield	0.0173	coordination	0.0069
			0.0057					tran	
carbon	0.0051			measurement	0.0065	smlsmlimage	0.0095		0.0067
japan	0.0049		0.0044	intensity	0.0065	product	0.0091	spectrum	0.0067
plant	0.0049		0.0043	spectra	0.0064	gifgifaltimg	0.0090	band	0.0064
signal	0.0048		0.0042	flame	0.0060	gifsisi	0.0090	compound	0.0057
aromatic	0.0048		0.0040	spectrum	0.0056	compound	0.0089	coordinate	0.0055
spectra	0.0045		0.0040	absorption	0.0053	mixture	0.0089	inorg	0.0053
degradation			0.0039	experiment	0.0052	gifgifimage	0.0088	specie	0.0051
proton	0.0042		0.0038	radiation	0.0051	synthesis	0.0082	stretch	0.0050
isolate	0.0040		0.0037	source	0.0050	smlgrgr	0.0072	bond	0.0050
presence	0.0040		0.0036	optical	0.0049	gifgrgr	0.0065	copper	0.0049
fraction	0.0040		0.0035	concentration	0.0043	scheme	0.0058	raman	0.0045
natural	0.0032		0.0034	measure	0.0042	add	0.0055	solid	0.0044
yield	0.0031	structure	0.0032	irradiation	0.0041	tetrahedron	0.0055	shift	0.0044
derivative	0.0031	silicon	0.0032	range	0.0039	methyl	0.0052	chemistry	0.0042
Topic 6		Topic 7		Topic 8		Topic		Topic	
Words	Prob	Words	Prob	Words	Prob	Words	Prob	Words	Prob
model	0.0144	state	0.0279	protein	0.0134	water	0.0075	protein	0.0250
energy	0.0086	energy	0.0245	amino	0.0110	plant	0.0062	activity	0.0222
function	0.0071	spectra	0.0126	peptide	0.0101	concentration	0.0060	enzyme	0.0214
phase	0.0071	electron	0.0119	acid	0.0077	sample	0.0051	bind	0.0173
equation	0.0069	fluorescence	0.0118	residue	0.0077	control	0.0051	concentration	0.0097
state	0.0067	molecule	0.0109	column	0.0066	level	0.0051	membrane	0.0083
parameter	0.0063	absorption	0.0098	chromatography	0.0063	production	0.0043	substrate	0.0078
field	0.0060	transition	0.0098	buffer	0.0057	total	0.0040	inhibitor	0.0067
calculate	0.0059	excitation	0.0098	enzyme	0.0057	organic	0.0037	receptor	0.0062
number	0.0059	transfer	0.0071	sequence	0.0055	treatment	0.0037	buffer	0.0002
constant	0.0056	spectrum	0.0070	fraction	0.0045	sediment	0.0036	inhibition	0.0051
	0.0055	emission	0.0076	activity	0.0043	growth	0.0030	liver	0.0031
point									
calculation	0.0053	intensity	0.0064	purification	0.0039	tissue	0.0032	assay	0.0045
order	0.0048	excited	0.0064	hydrolysis	0.0039	environmental	0.0032	biochem	0.0043
liquid	0.0045	electronic	0.0061	water	0.0038	marine	0.0029	phosphate	0.0042
large	0.0043	level	0.0061	extract	0.0035	biomass	0.0028	cytochrome	0.0039
theory	0.0041	molecular	0.0059	sample	0.0034	specie	0.0026	lipid	0.0039
measure	0.0040	orbital	0.0055	product	0.0034	research	0.0026	human	0.0039
frequency	0.0040	solvent	0.0050	sugar	0.0034	high	0.0024	presence	0.0037
interaction	0.0039	charge	0.0049	glucose	0.0034	waste	0.0024	cecc	0.0036
Topic 1 Words	1 Prob	Topic Words	12 Prob	Topic Words	13 Prob	Topic 1 Words	14 Prob	Topic Words	15 Prob
structure	0.0330	sample	0.0225		0.0292	polymer	0.0274	catalyst	0.0227
crystal	0.0148	concentration	0.0152		0.0102	membrane	0.0131	surface	0.0185
atom	0.0143	phase	0.0142		0.0092	water	0.0120	electrode	0.0130
compound	0.0121	column	0.013		0.0083	concentration	0.0088	oxidation	0.0107
angle	0.0109	water	0.010		0.0074	phase	0.0082	potential	0.0092
molecule	0.0103	standard	0.0098		0.0071	surface	0.0079	adsorption	0.0091
bond	0.0099	chromatogr	0.0093	3 strain	0.0071	chain	0.0075	carbon	0.0076
hydrogen	0.0095	determination	0.0092	2 cancer	0.0060	weight	0.0067	oxygen	0.0072
distance	0.0085	extraction	0.0083		0.0053	particle	0.0065	hydrogen	0.0069
molecular	0.0079	separation	0.0080		0.0051	molecular	0.0063	concentration	0.0065
onformation	0.0059	detection	0.008		0.0047	sample	0.0062	catal	0.0064
structural	0.0052	liquid	0.0068		0.0044	polym	0.0060	reduction	0.0064
interaction	0.0052	plasma	0.006	U	0.0043	property	0.0058	metal	0.0064
	0.0032	chromatograph			0.0043	copolymer	0.0056	support	0.0063
	0.0047	compound	0.0059		0.0043	figure	0.0053	catalytic	0.0062
energy		compound			0.0042	solvent	0.0053	oxide	0.0062
energy chemistry		oonisser				sorvent	0.0052	oxide	0.006
energy chemistry length	0.0046	capiccary	0.0050				0.0046		
energy chemistry length electron	0.0046 0.0045	analytical	0.0050) agent	0.0036	polymerization	0.0046	process	0.0059
energy chemistry length electron carbon	0.0046 0.0045 0.0044	analytical retention	0.0050) agent 9 clone	0.0036 0.0034	polymerization blend	0.0046	process specie	0.0059 0.0059
energy chemistry length electron	0.0046 0.0045	analytical	0.0050	0 agent 9 clone 5 plasmid	0.0036	polymerization		process	0.0059 0.0059 0.0058 0.0057

Table B2: Top Twenty Words for Topics in Articles

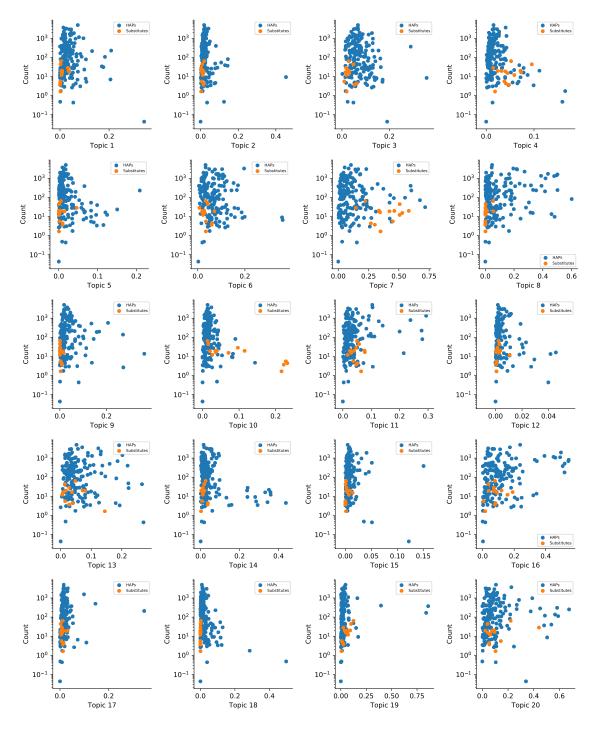


Figure B3: Scatterplot of Topics Proportion and Count for Patents.

14

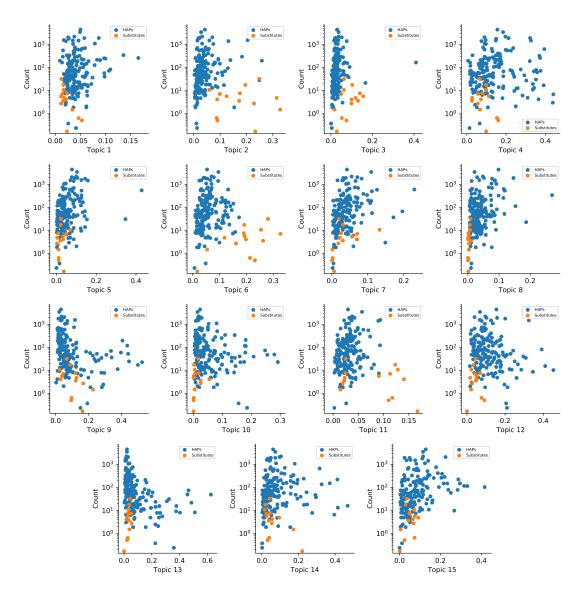
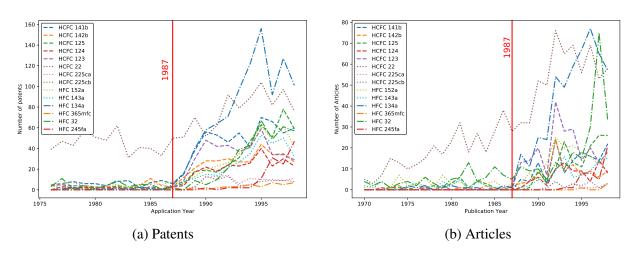
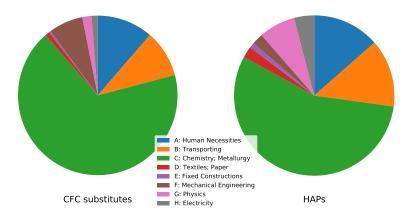




Figure B4: Scatterplot of Topics Proportion and Count for Articles.

C Difference-in-Differences

Figure C1: Document Counts for Individual CFC Substitutes

Figure C2: Top Level Patent Codes for CFC Substitutes and HAPs

Note: The figure shows that, overall, patents mentioning CFC substitutes and HAPs fall into similar top-level codes. HAPs are a group of 171 molecules that have no relationship to ozone and that are used for diverse industrial applications. The figure indicates the two groups of molecules present remarkable similarities, which motivates the use of HAPs as control molecules to estimate the causal effect of the post-Montreal regime. The patent codes are from the international patent classification.

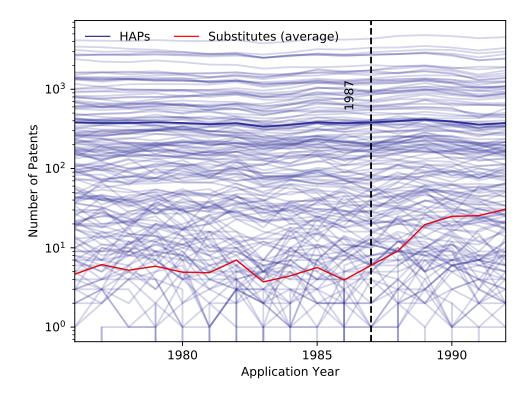


Figure C3: Patent Counts for Each HAP and for the Average CFC Substitute *Note:* The graph shows patent counts for each HAP (thin lines), for HAPs on average (thick line labeled "HAPs") and for CFC substitutes on average. The graph illustrates that many HAPs have counts much higher than the average CFC substitute and may, therefore, not be appropriate as comparison units.

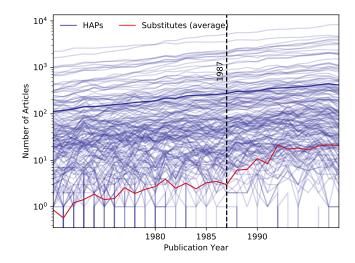


Figure C4: Articles Counts for Each HAP and for the Average CFC Substitute

Note: The grap shows article counts for each HAP (thin lines), for HAPs on average (thick line labeled "HAPs') and for CFC substitutes on average. The graph illustrates that HAPs are a diverse group of molecules. In particular, some of them have counts much higher than the average CFC substitute.

Table C1: Pre-Period Balance Table Between CFC Substitutes and HAPs

	HAPs	CFC substitutes	Difference	T-stat
Counts	10.88	5.36	5.52***	(4.47)
Counts (occurrence weighted)	11.75	4.19	7.56***	(5.27)
Counts (citation weighted)	15.53	9.15	6.38***	(3.44)
Counts (3-year citation weighted)	11.47	4.15	7.32***	(4.90)
Topic 1 (w. mean)	0.03	0.02	0.01	(0.98)
Topic 2 (w. mean)	0.04	0.01	0.03*	(2.56)
Topic 3 (w. mean)	0.10	0.02	0.08***	(6.91)
Topic 4 (w. mean)	0.03	0.04	-0.01	(-0.95
Topic 5 (w. mean)	0.04	0.01	0.03**	(3.21)
Topic 6 (w. mean)	0.11	0.03	0.08***	(5.16)
Topic 7 (w. mean)	0.11	0.37	-0.26***	(-10.41
Topic 8 (w. mean)	0.08	0.02	0.05***	(3.95)
Topic 9 (w. mean)	0.04	0.01	0.04***	(3.77)
Topic 10 (w. mean)	0.03	0.04	-0.01	(-1.16
Topic 11 (w. mean)	0.02	0.04	-0.03***	(-3.67
Topic 12 (w. mean)	0.01	0.01	0.00	(0.80)
Topic 13 (w. mean)	0.06	0.05	0.00	(0.06)
Topic 14 (w. mean)	0.12	0.02	0.10***	(5.41)
Topic 15 (w. mean)	0.01	0.01	-0.00	(-0.40
Topic 16 (w. mean)	0.06	0.10	-0.03*	(-2.14
Topic 17 (w. mean)	0.02	0.01	0.00	(0.38)
Topic 18 (w. mean)	0.04	0.00	0.03**	(3.22)
Topic 19 (w. mean)	0.02	0.07	-0.05***	(-7.30
Topic 20 (w. mean)	0.04	0.12	-0.07***	(-4.86

(a) Patents

(b) Articles

	HAPs	CFC substitutes	Difference	T-stat
Count	5.98	2.19	3.79***	(8.48)
Counts (occurrence weighted)	6.17	1.18	4.99***	(9.56)
Counts (citation weigh)	5.39	2.17	3.22***	(3.79)
Topic 1 (w. mean)	0.03	0.01	0.02***	(4.50)
Topic 2 (w. mean)	0.02	0.07	-0.04***	(-4.97)
Topic 3 (w. mean)	0.02	0.10	-0.08***	(-8.67)
Topic 4 (w. mean)	0.13	0.11	0.03	(1.36)
Topic 5 (w. mean)	0.05	0.06	-0.01	(-0.89)
Topic 6 (w. mean)	0.04	0.18	-0.13***	(-11.95)
Topic 7 (w. mean)	0.04	0.09	-0.05***	(-4.28)
Topic 8 (w. mean)	0.03	0.01	0.02***	(3.94)
Topic 9 (w. mean)	0.19	0.05	0.14***	(5.71)
Topic 10 (w. mean)	0.07	0.03	0.04***	(3.44)
Topic 11 (w. mean)	0.03	0.14	-0.11***	(-11.35)
Topic 12 (w. mean)	0.14	0.03	0.11***	(6.61)
Topic 13 (w. mean)	0.13	0.03	0.10***	(5.14)
Topic 14 (w. mean)	0.02	0.03	-0.01	(-1.19)
Topic 15 (w. mean)	0.05	0.07	-0.02*	(-2.01)

Note: The table displays the pre-period mean of outcome variables and topic proportions for patents and articles for CFC substitutes and for HAPs selected in the DiD sample.

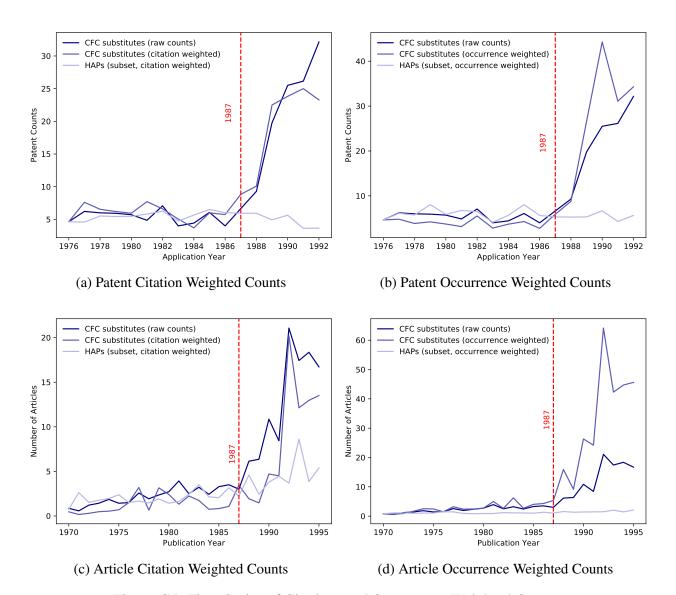


Figure C5: Time Series of Citation- and Occurrence-Weighted Counts *Note:* Time-series are scaled to make them equal in the first year of the sample. The graphs indicate that the post-1987 gap between CFC substitutes and HAPs persists even when counts are weighted by the number of citations or by the number of times molecules appear in the text.

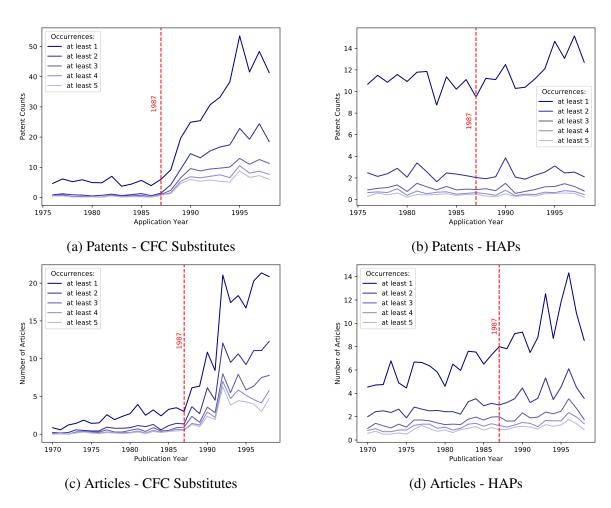


Figure C6: Robustness Check: Counts with Several Thresholds of Molecule Occurrences

Note: The graphs illustrate that the differential trends CFC substitutes and HAPs are not affected by adopting more stringent definition of what constitutes a document "about CFC substitutes".

	(1)	(2)										
Post 1987 x Substitutes	9.473*** (1.190)	3.370* (1.899)										
Post 1987 x Substitutes x Year	"S	2.814*** (0.656)	20									
Substitutes x Years		-0.275** (0.121)	ubstitutes .0						1987			• •
Years		0.583*** (0.071)	Coefficient for Year X Substitutes 0 10						19		+	
Post 1987		-1.555** (0.667)	fficient fo 0	+ +	•		+ +			+		
Year FE	Yes	No	Coe							I		
Molecule FE	Yes	Yes	-10	-					1			
R-squared Observations	0.709 714	0.720 714		1977	1979	1981	1983	1985 Years	198	87 198	9 19	991

Table C2: Difference-in-Differences with Triadic Patents Only

Standard errors in parentheses Dependent variable: Number of Triadic Patents. Years are relative to 1987. Time span: 1976 to 1992 * p < 0.10, ** p < 0.05, *** p < 0.01

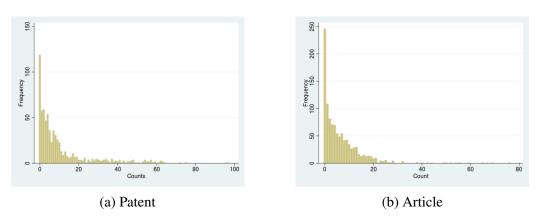


Figure C7: Histogram of Counts in DiD sample

Note: We see that the distribution of counts is, in both cases, zero-inflated and over-dispersed. Hence, a Zero-Inflated Negative Binomial model is preferable to a Poisson model.

(a) Patents

	(1) Count	(2) Count	(3) Count	(4) Citations	(5) Occurrences	(6) Citations-Occurrences
Post 1987 x Substitutes	1.733*** (0.132)	1.619*** (0.129)	1.317*** (0.130)	1.614*** (0.142)	2.211*** (0.172)	2.181*** (0.175)
Count (lag 1)			0.015*** (0.003)			
Count (lag 2)			0.008** (0.004)			
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Molecule FE	Yes	Yes	Yes	Yes	Yes	Yes
Topics (weighted)	No	Yes	Yes	Yes	Yes	Yes
R-squared Observations	714	595	528	595	595	595

Zero-inflated negative binomial regression. Dependent variable: Number of Patents. Time span: 1976 to 1992

(b) Articles

	(1)	(2)	(3)	(4)	(5)	(6)
	Count	Count	Count	Citations	Occurrences	Citations-Occurrences
Post 1987 x Substitutes		0.827*** (0.124)		1.407*** (0.274)	1.456*** (0.157)	2.163*** (0.220)
Count (lag 1)			0.009** (0.004)			
Count (lag 2)			0.012*** (0.004)			
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Molecule FE	Yes	Yes	Yes	Yes	Yes	Yes
Topics (weighted)	No	Yes	Yes	No	Yes	No
R-squared Observations	840	676	613	840	676	840

Zero-inflated negative binomial regression. Dependent variable: Number of Articles. Time span: 1976 to 1995

D Synthetic Control Method

D1 Theoretical Foundations

Here, I briefly summarize the theoretical underpinnings of the synthetic control method. Suppose there are J+1 molecules, J molecules as potential controls and one, denoted with the subscript 1, that is treated. The treatment effect can be written as $\alpha_{it} = Y_{it}^T - Y_{it}^N$, where Y_{it}^N is the number of document mentioning molecule *i* in year *t* if no intervention, and Y_{it}^T the number of documents mentioning molecule *i* in year *t* if intervention. Here the quantity we need to estimate is Y_{it}^N . Abadie, Diamond, and Hainmueller (2010) show that a weighted average of the control units can approximate the counterfactual Y_{it}^N , that is:

$$Y_{1,t}^N \to \sum_{j=2}^{J+1} w_j^* Y_{jt}$$
 with $w*$ s.t. $\sum_{j=2}^{J+1} w_j^* Y_{jt} = Y_{1,t}$ and $\sum w_j^* Z_j = Z_1$

To understand why this is the case, Equation 1 presents the underlying factor model. δ_t is an unknown common factor w constant loadings across units; θ_t is a vector of unknown parameters; Z_i a vector of observed covariates (not affected by intervention); λ_t unobserved common factors; μ_i a vector of unknown factor loadings and ε_{it} unobserved transitory shocks with zero mean. Note that this model generalizes the difference-in-differences model which imposes that λ_t be constant for all *t*. Hence, the unobserved confounders are constant in time and can be eliminated by taking time difference. Here, the synthetic control method allows the effects of confounding unobserved characteristics to vary with time; taking time differences would not get us rid of μ_i .

$$Y_{it}^N = \delta_t + \theta_t Z_i + \lambda_t \mu_i + \varepsilon_{it} \tag{1}$$

A synthetic control such that $\sum_{j=2}^{J+1} w_j^* Z_j = Z_1$ and $\sum w_j^* \mu_j = \mu_1$ would be unbiased estimator of Y_{1t}^N . In other words, fitting Z_1 and Y_{11} ... Y_{1T_0} is a way of indirectly fitting μ_1 , the unobserved factor loadings. As a result, it is important to restrict the donor pool to units with outcomes that are thought to be driven by the same structural process as for unit representing the case of interest and that were not subject to structural shocks to the outcome variable during the sample period.

D2 Figures and Tables

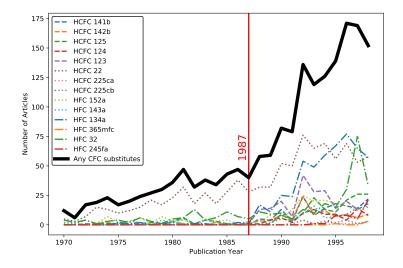


Figure D1: Article Counts for CFC Substitute, Individually and Aggregated

Note: The graph illustrates the difference between considering the 14 molecules independently and considering them as one treated molecule. The thick line called "Any CFC substitutes" corresponds to the number of articles mentioning any of the 14 CFC substitutes.

Table D1: Synthetic Control Method Extrapolation Check

(a) Patents

Variables (pre-1986 average)	Substitutes	HAPs Mean	HAPs Min	HAPs Max	HAPs Std.Dev.
Count	34.36	59	36.45	87.55	19.19
Topic 1 (weighted mean)	0.01	0.04	0.01	0.1	0.03
Topic 2 (weighted mean)	0.14	0.04	0	0.19	0.05
Topic 3 (weighted mean)	0.07	0.08	0.01	0.18	0.04
Topic 4 (weighted mean)	0.08	0.01	0	0.03	0.01
Topic 5 (weighted mean)	0.03	0.02	0	0.08	0.02
Topic 6 (weighted mean)	0.26	0.06	0.01	0.14	0.04
Topic 7 (weighted mean)	0.07	0.19	0.01	0.74	0.21
Topic 8 (weighted mean)	0.01	0.09	0	0.33	0.09
Topic 9 (weighted mean)	0.05	0.03	0	0.09	0.03
Topic 10 (weighted mean)	0.02	0.02	0	0.1	0.02
Topic 11 (weighted mean)	0.09	0.04	0	0.2	0.04
Topic 12 (weighted mean)	0.04	0.01	0	0.03	0.01
Topic 13 (weighted mean)	0.04	0.06	0.01	0.3	0.07
Topic 14 (weighted mean)	0.04	0.04	0.01	0.11	0.03
Topic 15 (weighted mean)	0.04	0.01	0	0.04	0.01
Topic 16 (weighted mean)	NaN	0.08	0.02	0.23	0.06
Topic 17 (weighted mean)	NaN	0.01	0	0.02	0.01
Topic 18 (weighted mean)	NaN	0.02	0	0.07	0.02
Topic 19 (weighted mean)	NaN	0.02	0	0.07	0.02
Topic 20 (weighted mean)	NaN	0.14	0.02	0.57	0.16

(1)	A / 1
(h)	Articles
(U)	1 m m m m m m m m m

Variables (pre-1986 average)	Substitutes	HAPs Mean	HAPs Min		HAPs Std.Dev.
Count	34.36	31.38	22.27	41.82	4.85
Topic 1 (weighted mean)	0.01	0.04	0.01	0.11	0.03
Topic 2 (weighted mean)	0.14	0.03	0.01	0.07	0.02
Topic 3 (weighted mean)	0.07	0.02	0	0.1	0.02
Topic 4 (weighted mean)	0.08	0.1	0.02	0.31	0.08
Topic 5 (weighted mean)	0.03	0.04	0	0.13	0.04
Topic 6 (weighted mean)	0.26	0.05	0.01	0.18	0.05
Topic 7 (weighted mean)	0.07	0.04	0	0.24	0.05
Topic 8 (weighted mean)	0.01	0.03	0	0.08	0.02
Topic 9 (weighted mean)	0.05	0.13	0.03	0.45	0.13
Topic 10 (weighted mean)	0.02	0.08	0.01	0.25	0.07
Topic 11 (weighted mean)	0.09	0.03	0	0.08	0.02
Topic 12 (weighted mean)	0.04	0.13	0.04	0.32	0.07
Topic 13 (weighted mean)	0.04	0.16	0.01	0.49	0.15
Topic 14 (weighted mean)	0.04	0.06	0.01	0.29	0.07
Topic 15 (weighted mean)	0.04	0.05	0	0.14	0.04

Note: The table displays summary statistics for the aggregated CFC substitutes and HAPs for patents. We note that the range of values displayed by the HAPs always contains the value for CFC substitutes. Hence, the constraints that weights must sum to 1 and be non-negative does not seem to be an issue. Such constraint is imposed by the synthetic control method algorithm to avoid extrapolation.

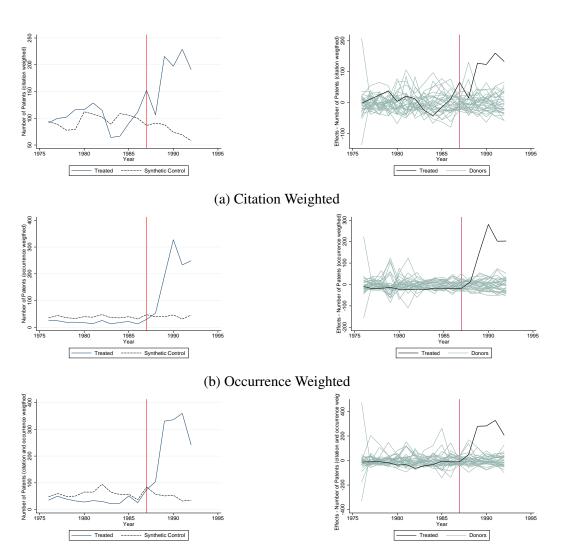
Table D2: HAPs Contributing to the Synthetic Control

(a) Patents

HAPs	Weight	Description
Calcium cyanamide	0.327	Used as a fertilizer, defoliant, herbicide, fungicide, and pesti- cide; in the manufacture and refining of iron; and in the manu- facture of calcium cyanide, melamine, and dicyandiamide.
Polychlorinated biphenyls	0.206	Group of chemicals characterized by non-flammability, stability, high boiling point and electrical insulating properties. Hundreds industrial applications: electrical and heat transfer, paints, plas- tics.
Methyl bromide	0.140	Used as a fumigant in soil to control fungi, nematodes, and weeds; inspace fumigation of food commodities (e.g., grains); and in storage facilities (such as mills, warehouses, vaults, ships, and freight cars) to control insects and rodents.
Benzidine	0.116	Production of dyes, especially azo dyes in the leather, textile, and paper industries
o-Xylenes	0.103	Used in the production of ethylbenzene, as solvents in products such as paints and coatings, and are blended into gasoline.

(b) Articles

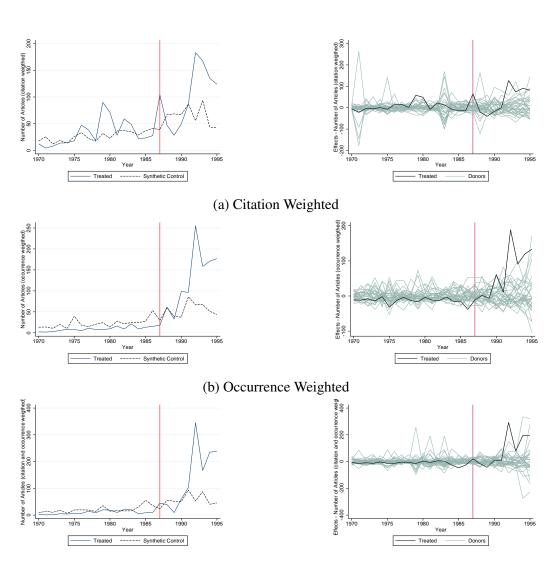
HAPs	Weight	Description
Bromoform	0.503	Used as a fluid for mineral ore separation, as a laboratory reagent and in the electronics industry in quality assurance programs. Was used as a solvent for waxes, greases, and oils, as an ingredi- ent in fire-resistant chemicals and in fluid gauges. Also used as an intermediate in chemical synthesis, as a sedative and cough suppression agent.
1,4-Dichlorobenzene	0.332	Used mainly as a fumigant for the control of moths, molds and mildews, and as a space deodorant for toilets and refuse con- tainers. Also used as an intermediate in the production of other chemicals, in the control of tree-boring insects, and in the control of mold in tobacco seeds.
Trifluralin	0.165	Herbicide. Mostly used on cotton, soybeans and some fruits and vegetables


Note: The tables describe the HAPs entering the synthetic control for the synthetic control method specification. The information displayed in the "Description" column was collected from the EPA website.

Va	ariable Weight	(b) A	Articles
Topic 1	0.02	(0)1	in the let b
Topic 2	0.04	Va	riable Weigh
Topic 3	0.05	Topic 1	0.06
Topic 4	0.10	Topic 2	0.06
Topic 5	0.03	Topic 3	0.00
Topic 6	0.02	Topic 4	0.07
Topic 7	0.10	Topic 5	0.07
Topic 8	0.04	Topic 6	0.00
Topic 9	0.01	Topic 7	0.07
Topic 10	0.03	-	0.02
Topic 11	0.01	Topic 8	
Topic 12	0.04	Topic 9	0.02
Topic 13	0.03	Topic 10	0.07
Topic 14	0.04	Topic 11	0.13
Topic 15	0.02	Topic 12	0.05
Topic 16	0.01	Topic 13	0.12
Topic 17	0.02	Topic 14	0.04
Topic 18	0.08	Topic 15	0.07
Topic 19	0.27	Count	0.05
Topic 20	0.01		
Count	0.02		

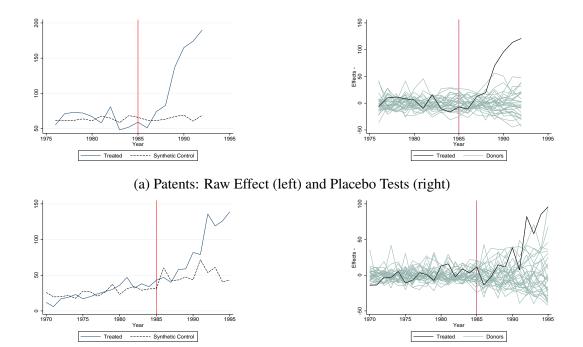
Table D3: Variable Weights Used in the Construction of the Synthetic Control

(a) Patents


Note: The table displays the value of each variable's contribution to the synthetic control. We note that topic 19, 4 and 7 contribute the most for patents, and topic 11 and 13 for articles. This indicate that these topics had the highest correlations with the outcome variable. In the Stata *synth* package, these weights are determined according to the amount of predictive power that each variable has over the outcome.

(c) Occurrence and Citation Weighted

Figure D2: Robustness Check for Patents: Synthetic Control Method with Counts Weighted by Occurrences and Citations


Note: These figures show that implementing the synthetic Control method using patent counts weighted by molecule occurences and patent citation does not alter the main conclusions.

(c) Occurrence and Citation Weighted

Figure D3: Robustness Check for Patents: Synthetic Control Method with Counts Weighted by Occurrences and Citations

Note: These figures show that implementing the synthetic sontrol method using article counts weighted by molecule occurences and article citation does not alter the main conclusions.

(b) Articles: Raw Effect (left) and Placebo Tests (right)

Figure D4: Synthetic Control Method Graphs for CFC Substitutes Assuming Anticipation

Note: These figures show that implementing the synthetic control method using years only up to 1982 does not alter the main conclusions.

Table E1: Five Most Common Patent Codes for Patents Mentioning CFC Substitutes	Table E1: Five Most	Common Patent	Codes for Patents	Mentioning	CFC Substitutes
--	---------------------	---------------	-------------------	------------	-----------------

ICL	Count	^t Description
C07C	357	Acyclic or carbocyclic compounds
C08J	156	General processes of compounding
C09K	147	Materials for applications not otherwise provided for
C08G	84	Compounds of unknown constitution
C10M	73	Lubricating compositions

Note: The table displays the most frequent codes associated with patents mentioning CFC substitutes. As expected, most codes belong to the C class ("Chemistry, Metallurgy"). The subclasses "C07" and "C08" refer to the preparation (e.g., purification, separation, or stabilization) of organic compounds. As such, they encompass any patent related to compounds containing carbon and halogen atoms (e.g., C07C 19/00: Acyclic saturated compounds containing halogen atoms). To limit noise, the sample used to generate the table contains only documents with at least three occurrences of CFC substitutes.

Table E2: Titles of the Five Most Cited Patents Mentioning CFC Substitutes

Nbr Cit	YearAssignee	Title
104	1995 Glaxo Group Limited, UK	Aerosol formulations containing P134a and salbutamol
103	1995Glaxo Group Limited, UK	Aerosol formulations containing P134a and particulate medica- ments
101 97	1995Glaxo Group Limited, UK 1995Riker Laboratories, Inc., USA	Aerosol formulations containing propellant 134a and fluticasone Medicinal aerosol formulations

Note: The table displays the titles of the most cited patents mentioning CFC substitutes. Patent citation patterns vary significantly across industries. The fact that the most cited patents here all relate to pharmaceuticals applications (e.g., aerosol formulation of a drug) may only be indicative of that sector's higher patenting output or tendency to cite more. To limit noise, the sample used to generate the table contains only documents with at least three occurrences of CFC substitutes.

E Others Figures and Tables

Nbr Cit	YearTitle	Journal	Affiliation 1st author
509	1992 troscopy and tropospheric chemistry	- Atmospheric Envi- ronment Part A	Academia (DE, UK, FR)
419	Evaporative heat transfer, pressure drop and 1982:ritical heat flux in a small vertical tube with R-113		
401	199Ænvironmental catalysis	Environmental	Air Products & Chem. Inc (USA)
346	1993 ganic compounds	Tetrahedron	Academia (IT)
333	1996 Methods for the synthesis of gem difluoromethylene compounds	Tetrahedron	James Black Foundation (UK)

Table E3: Titles of the Five Most Cited Articles Mentioning CFC Substitutes

Note: The table displays the titles of the most cited articles mentioning CFC substitutes. As expected, articles focus on the chemical and physical characteristics of CFC substitutes (e.g., "kinetics" or "evaporative heat transfer") as well as on synthesis routes. To limit noise, the sample used to generate the table contains only documents with at least three occurrences of CFC substitutes.

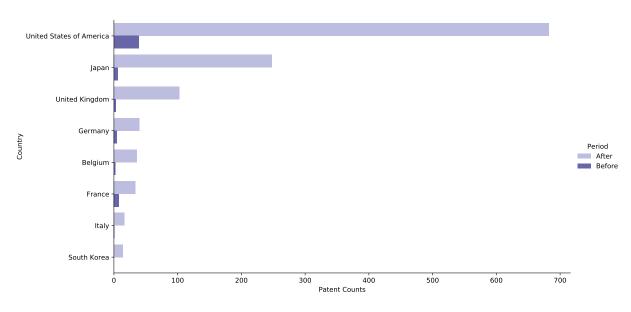


Figure E1: Patent Counts by Country Before and After 1987

	(a _.) Pater			
	count	mean	sd	min	max
Occurrences	3437	6.17	11.32	1.00	187.00
Citations	3273	9.25	13.23	0.00	153.00
USA	3179	0.59	0.49	0.00	1.00
UK	3179	0.05	0.22	0.00	1.00
Japan	3179	0.19	0.39	0.00	1.00
Canada	3179	0.00	0.07	0.00	1.00
France	3179	0.03	0.17	0.00	1.00
Germany	3179	0.09	0.28	0.00	1.00
Italy	3179	0.01	0.11	0.00	1.00
Europe	3179	0.21	0.41	0.00	1.00
Education	3140	0.03	0.16	0.00	1.00
Company	3140	0.96	0.19	0.00	1.00
Government	3140	0.00	0.07	0.00	1.00
Facilities	3140	0.00	0.07	0.00	1.00
Non Profit	3140	0.00	0.00	0.00	0.00
Healthcare	3140	0.00	0.00	0.00	0.00

Table E4: Summary Statistics for Documents Mentioning CFC substitutes

(b) Articles

	count	mean	sd	min	max
Occurrences	1926	7.18	16.53	1.00	222.00
Citations	926	31.74	70.58	0.00	1298.00
USA	892	0.37	0.48	0.00	1.00
Japan	892	0.09	0.29	0.00	1.00
UK	892	0.10	0.31	0.00	1.00
Germany	892	0.08	0.28	0.00	1.00
France	892	0.05	0.22	0.00	1.00
Italy	892	0.05	0.22	0.00	1.00
Canada	892	0.05	0.22	0.00	1.00
India	892	0.03	0.17	0.00	1.00
Netherlands	892	0.04	0.19	0.00	1.00
Spain	892	0.01	0.11	0.00	1.00
Europe	892	0.38	0.49	0.00	1.00
Education	893	0.68	0.47	0.00	1.00
Company	893	0.13	0.34	0.00	1.00
Government	893	0.09	0.29	0.00	1.00
Facilities	893	0.15	0.36	0.00	1.00
Non Profit	893	0.04	0.19	0.00	1.00
Healthcare	893	0.02	0.14	0.00	1.00

Note: "Occurrences" capture the number of time any relevant molecule is mentioned in the document. "Facilities" encompass building or facilities researching specific areas and usually containing specific equipment (e.g., a nuclear plant). "Healthcare" corresponds to institutions were patients are treated (e.g. hospitals). See Section 3 for more details about country and affiliation data.

Table E5: Summary Statistics for Documents Mentioning CFC Substitutes Before and After 1987

Note: "Occurrences" capture the number of time any relevant molecule is mentioned in the document. "Facilities" encompass building or facilities researching specific areas and usually containing specific equipment (e.g., a nuclear plant). "Healthcare" corresponds to institutions were patients are treated (e.g. hospitals). See Section 3 for more details about country and affiliation data.

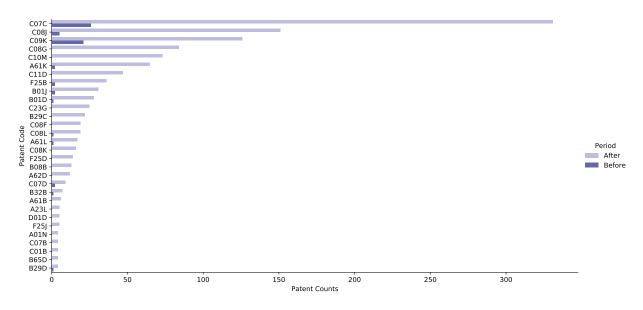


Figure E2: Most Frequent Codes for Patents Mentioning CFC Susbtitutes Before and After 1987

Note: The figure illustrates the differences between the most frequent codes for patents before and after 1987. The most frequent patent codes before 1987 tend to be the most frequent after 1987. At the same time, some codes with low to zero frequency before 1987 become important after 1987 (e.g., C08G, C10M, C23G or C11D). Only patents with at least 3 molecule occurrences are kept in the sample.

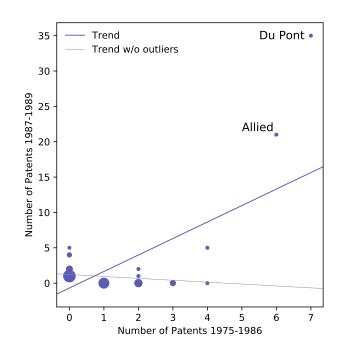


Figure E3: Patenting Before 1987 as a Predictor to Patenting After 1987

Note: The size of the dot is proportional to the number of firms. To limit noise, the sample used to generate the table contains only documents with at least three occurrences of CFC substitutes. The scatter plot shows, for each firm in the sample, patent counts between 1975 and 1986 on the x-axis, and patent counts in the two years that followed Montreal on the y-axis. We see that two outlier firms drive to a positive trend: DuPont and Allied. Excluding those, there are no clear correlations between patenting before 1987 and patenting in the immediate aftermaths of Montreal.

F Theoretical Model

Suppose N countries, all identical and indexed by *i*. Each country emits a pollutant that damages a shared environmental resource but can also abate an amount q_i of pollution. The benefits from abatement depends on the total amount abated by all countries:

$$B_i(Q) = \frac{b}{N} \left(aQ - \frac{Q^2}{2}\right) \tag{2}$$

where $Q = \sum q_i$ and a, b, and c are positive constants.

The costs of abatement only depend on each country's own abatement:

$$C_i(q_i) = \frac{c}{2}q_i^2 \tag{3}$$

At the uncooperative equilibrium, countries abate up to the point where the marignal costs equal the marginal benefits for country *i*. Hence, we obtain the expression below for q_N , the amount country *i* abates in the noncooperative equilibrium:

$$MC_i = MB_i \Leftrightarrow cq_i = \frac{b}{N}(a - Q) \Leftrightarrow q_N = \frac{1}{N}\frac{a}{1 + \frac{c}{h}}$$
(4)

At the cooperative, countries abate up to the point where the marignal costs equal the global marginal benefits. Hence, we obtain the expression below for q_C , the amount country *i* abates in the cooperative equilirbium:

$$MC_i = \sum_i MB \Leftrightarrow cq_i = N * \frac{b}{N}(a-Q) \Leftrightarrow q_C = \frac{a}{N + \frac{c}{b}}$$
(5)

Define the net benefits Π as the difference benefits and costs. The gains from cooeperation are:

$$CooperationGains = \Pi_C - \Pi_N = N * \left(B_i(q_C) - C_i(q_C) \right) - N * \left(B_i(q_N) - C_i(q_N) \right)$$
(6)

Figure F1 illustrates the size of cooperation gains for specific value of b and c (and N set at 100). We note that cooperation gains are highest when c and b are both large. As Barrett (1994) showed, the area when cooperation gains are the highest are is the area where it is the most difficult to sustain a self-enforcing coalition.

Next, I extend this simple model by assuming that countries make their abatement decisions over several time periods and endogenize innovation. The parameter c now is replaced by a function c of the amount of abatement in the previous period:

$$c_t(q_t) = c_0(1-r)^{q_{t-1}} \tag{7}$$

, where *c* is a constant controlling how costly abatement is, and *r* a constant between 0 and 1 that can be interpreted as a learning rate. The higher the amount of abatement in period t - 1 and the lower the marginal cost of abatement in the next period. As Figure F2 illustrates, over several time periods, the area of high gain from cooperation reduces indicating that allocations that used to be difficult to achieve are now within reach.

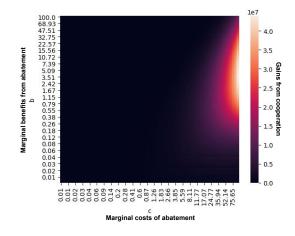


Figure F1: Gains from Cooperation

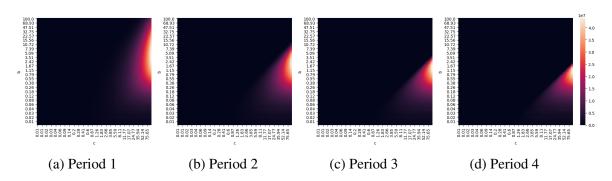


Figure F2: Gains from Cooperation and Induced Innovation