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Abstract

While most households around the world have access to electricity, the number of
hours per day when the grid supplies them with adequate voltage can be low. Improving
the reliability of electricity is crucial to make progress on energy poverty but measuring
and monitoring it is difficult, especially in lower-income countries where official data is
sparse. We develop a transparent method using only easily accessible data to track the
reliability of electricity. We train a decision tree model to predict the number of hours
with normal electricity in Uttar Pradesh, India, using monthly nighttime luminosity,
village characteristics, and voltage data from monitors installed in households. The
approach successfully predicts reliability across time and space, and we document that,
in Uttar Pradesh, the average number of hours per day with normal electricity has
increased by 0.6 hours between 2014 and 2019. The predicted number of hours with
normal/reliable electricity supply for 2019 remains as low as 8.1 hours.
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1 Introduction

The past decade has seen dramatic efforts to address energy poverty throughout the world.

The United Nation’s Sustainable Development Goal 7 (SDG7) sets a target of ensuring access

to affordable, sustainable and modern energy to the world’s population by 2030. Significant

steps have been taken towards achieving this goal, with developing countries spending billions

of dollars to expand access. In 2017, the Indian government promised to electrify every

Indian household by 2019. The “Saubhagya” scheme was launched, and 99.9% of households

now have access to electricity, according to its online tracking portal (Saubhagya Initiative

2021). While there are some important caveats to this claim (Aklin, Blankenship, et al. 2020;

Blankenship et al. 2020; Fairley 2019; Urpelainen 2019), there is no doubt about the scale of

the achievement in a country that had around 600 million without electricity at the beginning

of the 21st century (The Economist 2018).

If connecting households to national electricity grids is an essential first step towards the

goal of universal electrification, the quality of the electricity flowing through the wires is

almost as important. When the electricity that reaches households is outside of a reasonable

range of voltage (too high or too low), appliances can quickly lose their utility or be damaged.

Previous studies have found that reliability helps determine whether grid connections improve

development outcomes. For example, Chakravorty et al. (2014) estimated that, although grid

connections raised rural non-agricultural income by about 9%, a higher number of hours of

electricity raised income by 28.6%. Two World Bank studies found, in India and Bangladesh,

that the scale of economic benefits derived from electrification was highly dependent on the

reliability of the electricity provided (Allcott et al. 2016; Samad and F. Zhang 2016, 2017).

While data about grid connections is readily available via official records, how much volt-

age each connection gets throughout the day is typically not. Previous efforts have used

crowdsourcing (Kennedy et al. 2020) or surveys (Aklin, Cheng, et al. 2016) to measure relia-
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bility, but such efforts remain limited in terms of accuracy and aggregation. Others have used

highly disaggregated satellite data (Min, O’Keeffe, et al. 2017). This data, however, is not

easily accessible for most scholars and practitioners and requires an extensive infrastructure

to store and process.

In this paper, we test a method for monitoring the reliability of electricity in Uttar

Pradesh, India, that uses only publicly available and easily accessible nighttime lights data.

The intuition is that areas with less reliable electricity should display lower nighttime lumi-

nosity, conditional on similar demographic characteristics. We use a regression tree algorithm

to develop a predictive model of electricity reliability where the main features are monthly

nightlight luminosity and socio-demographic characteristics which we obtain from the In-

dian census. We construct a training sample using household voltage data as a ground-truth

proxy of electricity reliability.

The results suggest that this approach produces surprisingly accurate estimates of elec-

tricity reliability on aggregate and across time and space. We extend the analysis to estimate

that the average number of hours per day of normal voltage in Uttar Pradesh has increased

by 0.6 hours between 2014 and 2019. The expected number of hours of normal voltage

remains as low as 8.1 hours per day.

2 The Difficulty in Measuring Reliability

Policy-makers have increasingly recognized the importance of reliability for electrification to

achieve its aims in poverty reduction. The importance of electricity reliability in the fight

against energy poverty is now fully recognized in policy circles; for example, in the multi-tier

framework developed by the World Bank (Bhatia and Angelou 2014).

If they expect poor quality from the electricity grid, customers have little incentive to

connect more devices and use more electricity, resulting in low demand (Grimm et al. 2020;

K. Lee et al. 2017). Kemmler (2007), for example, found that electricity consumption in
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India correlates strongly with the quality of the electricity supply and only weakly with

household expenditures. Others have found that willingness to pay for electricity in Indian

villages correlates strongly with the reliability of supply in their area (Graber et al. 2018;

Kennedy et al. 2019) and that satisfaction with electricity supply strongly correlates with

reliability (Aklin, Cheng, et al. 2016). When poor reliability is combined with the monthly

fees imposed by utilities to keep households connected to the grid, customers may find

themselves better off by sticking with or returning to traditional energy sources like kerosene

or diesel generators.

Unfortunately, monitoring reliability is challenging because it requires almost continuous

measurement of currents flowing through the grid. Governments and utilities rarely provide

consistent and accurate reporting, and even these reports are often difficult to acquire (Min,

O’Keeffe, et al. 2017). Both the utilities (Grimm et al. 2020; K. Lee et al. 2017) and

politicians (Baskaran et al. 2015; Min and Golden 2014) have little incentive to improve

this situation. One may think that utilities and governments would keep comprehensive and

accurate data, but this is rarely the case in developing countries. Data on load-shedding is

inconsistently reported and challenging to acquire (Min, O’Keeffe, et al. 2017). For example,

in 2017, official data in Uttar Pradesh showed nearly no power cuts, while independent

monitors indicated regular outages of two to nine hours a day (Sengupta 2017).

Incentives for both utilities and government officials to accurately report reliability are

weak. Utilities have little incentive to release data that would document the poor reliability

of the electricity they sell. Extending electricity connections to poorer, more rural areas

has already placed their resources under strain (Grimm et al. 2020; K. Lee et al. 2017).

Publicizing problems in deliveries, especially poorly planned load-shedding, is only likely

to encourage further requests for higher investments into areas with low purchasing power.

Incentives are also weak for politicians to enforce accurate and public reporting of power

outages. In fact, previous studies have suggested that they strategically ignore practices
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that contribute to poor reliability, like electricity theft, to improve their electoral prospects

(Baskaran et al. 2015; Min and Golden 2014). Publicly available data from official sources

is therefore often unavailable or not reliable.

In response to the lack of data on electricity reliability, scholars have adopted a range

of approaches. One is to directly ask people about the quality of their electricity (Gibson

and Olivia 2010; Kennedy et al. 2019). While this can provide some indication of where

reliability problems exist, large-scale surveys are costly to implement, representative only at

a highly-aggregated level, and only reflect a snapshot in time (Min, O’Keeffe, et al. 2017).

More importantly, respondents often have difficulty remembering how much and when they

had good electricity, even over 24 hours. One study found, for example, that there is only

a moderate correlation between people’s reported and actual hours with normal electricity

(measured by monitors) (Kennedy et al. 2020).

Recently, scholars have turned to satellite data. Although nightlight luminosity has a

long history of being used to track electricity access (Baskaran et al. 2015; Min and Gaba

2014; Min, Gaba, et al. 2013), it is an underexploited tool to study the issue of reliability.

An exception is Min, O’Keeffe, et al. (2017) who use high-frequency, nightly, DMSP-OLS

nighttime imagery in India from 1993-2013 to create a power supply irregularity index and

show that the index is relatively consistent with ground-based measures. This approach,

however, is not designed to be easily reproduced. The highly disaggregated data is chal-

lenging to obtain and very large (about five terabytes), and the standard public distribution

is at a yearly composite with a one-year lag. This poses some difficult obstacles for those

interested in getting near-real-time estimates of reliability using publicly available data.

Some studies have attempted to use VIIRS nighttime luminosity data to measure reliabil-

ity within specific areas using smart-meter data. Deng et al. (2019), for example, study the

relationship between night light and electric power consumption for a small area in upstate

New York. Our approach is most similar to Mann et al. (2016) since they also use Prayas
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monitor data (for the state of Maharashtra). However, they focus on predicting the rate of

power outages at each location (that is, the percentage of days when power fell below 100V)

between Jan 2015 to Sept 2015. Our approach differs in two critical ways. First, we predict

a quantity that more directly translates into households’ living conditions: the number of

hours with normal electricity. Second, we track progress over several years with the hope of

informing policy discussions.

3 Estimating Electricity Reliability with Night Lights

To assist policy-makers and NGOs in creating baseline measures of reliability, we rely on

data that is widely available and relatively easy to process. We also utilize machine learn-

ing methods that have a high degree of interpretability and explainability (regression tree

algorithms). In this section, we provide an overview of these data and methods.

3.1 Ground Truth Data

As ground truth data, we use household-level voltage data collected by Prayas, a non-

governmental and non-profit organization; the data are available at https://dataverse.harvard.

edu/dataverse/esmi. As part of their Electricity Supply Monitoring Initiative (ESMI), Prayas

installs plug-in devices of about the size of a handheld radio that record electric voltages.

The monitors record voltage with an accuracy of plus or minus 4 volts on a minute-by-minute

basis and transmit an update over mobile networks to a central server every minute. A key

advantage of this data, beyond its high frequency, is that it is not subject to systematic

omission of load-shedding outages or other censoring. This makes it preferable to many

other sources of data on electricity reliability. Although Prayas has installed a total of 528

locations across India, we focus on the state of Uttar Pradesh where 179 monitors exist across

16 districts.

We look at Uttar Pradesh for a few reasons. First, as the most populous area of India,

with about 200 million residents, it is outsized in its importance for politics. Uttar Pradesh
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is also one of the poorest areas of India, with approximately 60 million people living below

the poverty line, making it disproportionately important when it comes to studying energy

poverty. Second, villages and towns have a wide range of sizes, wealth, and composition,

including a significant “scheduled caste” (SC) populations which have been traditionally

discriminated against in Indian society. Finally, as noted earlier, Uttar Pradesh is, at least

on the surface, a real success story for the government’s electrification expansion program.

According to official statistics, the state went from having the fourth lowest electrification

level in 2017 to purportedly 100% household electricity connections in 2019.

Figure SI1 maps the villages where at least one Prayas monitor has been installed. While

the locations are not randomly selected, we note that they are widely distributed across the

area, covering the extent of the state. Prayas installed a total of 179 monitors in the state.

However, at times, monitors fail to record or transmit data (because of various malfunctions),

and some locations have also discontinued monitoring and have no data for our time period.

After dropping locations without any voltage observations, we are left with 154 unique Prayas

monitors located in 96 distinct towns or villages of Uttar Pradesh.

Table SI1 provides summary statistics at the village level for all of the variables used for

this study. We note that the sample contains good variation. The average village or town

with a Prayas monitor has a population close to 100,000 inhabitants and an area of 243,290

square kilometers. The average monthly sum of nightlight per area is about 20, but it varies

from 0 to almost 600.

Voltage observations are values between 0 and 260 Volt for every minute of every hour, for

a time period spanning from November 2014 to December 2018 (a total of 50 months). Since

the predictive feature in this study is monthly nighttime luminosity, we aggregate voltage

observations at the monthly level. We calculate a “monthly voltage” by taking the mean of

the measurements available in any given month. We also derive a mean “nighttime” voltage

by calculating a similar variable but only considering hours between 8 PM and 6 AM.
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Although average monthly voltages offer a precise measure of electricity supply, they

are not particularly easy to interpret. Instead, we use the number of hours per day with

“normal”electricity as a better, easy-to-understand proxy of reliability and define“normal”as

an electric voltage between 205 and 270 Volt. We define voltage below 130 V as “no voltage”;

voltage between 131 and 204 V as “low voltage”, and voltage between 271 and 400 V as “high

voltage”. We take these definitions from the Prayas website: www.watchyourpower.org/faqs.

php. We also use an alternative measure of electricity as voltage higher than 175 V as a

robustness check.

Unfortunately, monitor data is not continuously available for all locations. To illustrate

the issue, Figure SI2 provides a snapshot of the number of hours per day with normal

electricity over time for seven different Prayas locations. Figure SI3 also shows periods

of coverage and missing data for twelve locations. Many locations have data for only a few

months. Although the average span between the first and last recording is 18 months, voltage

data is available only for about six months on average. This emphasizes the continued need

for increasing the quality of ground truth data. In the end, our training data contains a total

of 679 observations (on average 7 monthly observations for each of the 96 villages/towns).

Our primary variable of interest counts the number of minutes in each day of each month

with “normal” voltage. When data is not missing, (i.e. when data for all hours of the day is

available), our measure reports the average number of hours in a day with the corresponding

voltage. In a few cases, voltage recordings are incomplete and several hours are missing1.

For those missing hours, we replace the missing value with the average number of minutes

with normal electricity that this monitor typically has in the same hour of the day.2 Table

1. Only 1.3% of all hours are missing, i.e., whenever voltage data is available for a monitor-day, we observe
all hours during that monitor-day.

2. There is one monitor where we could not implement this rule because data was available for only one
day. We could therefore not use data from other days to infer what the missing values may be. In this
case, we use a proportional rule: we calculated the percentage of minutes with “normal” electricity for the
observed hours and assume the same percentage would have occurred for the other hours of the day that we
don’t observe.
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SI2 indicates that, in the average month, the average village or town in the sample has about

12.5 hours of normal electricity per day. There is much variation, however, since some places

have as little as zero hours and others as much 24.

3.2 Nightlights Data

For nightlights data, we use data from the Visible Infrared Imaging Radiometer Suite (VIIRS)

instrument, located on the Suomi National Polar-orbiting Partnership (NPP) satellite (Miller

et al. 2013; NASA 2020). VIIRS provides global coverage for important environmental

products, including imagery of daytime solar and nocturnal lunar reflectance in addition

to nighttime natural and artificial visible and near-infrared lights. Specifically, we use the

VIIRS Nighttime Day/Night Band Composites product, which is processed and provided by

the Earth Observatory Group at the Colorado School of Mines, accessed through the Google

Earth Engine.3 This data is easily accessible to policy-makers, and because of its smaller

size and professional hosting on Google Earth Engine, it can be much more easily analyzed.

Scholars have noted a number of issues with this data, such as biophysical seasonality,

significant inter-temporal variability, and others (Levin 2017; Levin and Q. Zhang 2017).

Some have also raised the issue that the measurements tend to be taken very early in the

morning (between midnight and 2 AM), which do not represent peak use hours (Mann et

al. 2016). With all of this said, previous research has demonstrated that models using this

data can be quite accurate, even at the pixel or building level (Deng et al. 2019; Mann

et al. 2016). Google Earth Engine also processes the data to, for example, account for cloud

cover using the VIIRS Could Mask product (VCM).

Monthly average radiance composite images were collected from January 2012 to 2019 for

all the 98,082 villages and 908 towns of the state of Uttar Pradesh. Following the findings of

Dugoua et al. (2018), we use the logged sum of the digital number (DN) of luminosity within

3. https://developers.google.com/earth-engine/datasets/catalog/NOAA VIIRS DNB MONTHLY V1
VCMSLCFG
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the area of the target village. The area of the village is drawn from shapefiles constructed

by ML Infomap, a private corporation that provides village-level shapefiles for India. Impor-

tantly, the data is filtered to exclude observations impacted by stray light, lightning, lunar

illumination, and cloud cover before averaging (Google Earth Engine, n.d.).

A disadvantage of using the VIIRS DNP data is that it is monthly, compared to the daily

data used by Min, O’Keeffe, et al. (2017), and, as a result, it may not detect short-term

fluctuations. However, since our goal is to construct an approximate measure of reliability for

given villages, monthly aggregate should be sufficient. The higher the reliability of electricity

in a particular area, the higher the number of hours at night that will appear as “luminous”.

The more of such nights during a particular month, the higher the value in the monthly

composite nightlight data.

3.3 Demographic Data

The satellite data is combined with information about the villages and towns over which the

digital number (DN) of luminosity is calculated. To measure these characteristics of villages

and towns, we use the 2011 Census of India. We include four specific variables which were

found to substantially impact the accuracy of our results. First, we account for the total

population and households in the region since this helps account for the potential number of

electricity consumers. Second, we look at the level of literacy in the village as a method for

accounting for the affluence of the village. Finally, we use the area of the village to take into

account the size of the landmass over which the sum of DN in the raster data is summed.

3.4 Analysis

The analysis is conducted using a regression tree method. This machine learning method

functions by partitioning the data at a “parent” node into two “child” nodes. The split is
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done based on information gains (IG), which are defined as:

IG(Dp, f) = I(Dp)− (
Nleft

Np

I(Dleft) +
Nright

Np

I(Dright)) (1)

Here f is the feature on which the split is performed, I is the impurity measure, Np is the

total number of samples at the parent node, and Nleft and Nright are the number of samples

in the child nodes. For regression problems, which attempt to model continuous variables,

the impurity measure used is the weighted mean squared error (MSE), defined as:

MSE(t) =
1

Nt

∑
(yi − ŷt)

2 (2)

Here, Nt is the number of cases at node t, yi is the true target value for cases in node t, and

ŷt is the predicted value (the mean for the cases in the child node).

Regression trees increase their performance by adding layers that split child nodes into

additional child nodes until such splits cease to yield additional IG. This strategy allows the

modeling of complex relationships that include discontinuities and interactions, which we

expect in this data. In addition to their flexibility, regression trees are reasonably easy to

implement and interpret, making them especially well-suited to our goal of demonstrating a

system that can be utilized by policy-makers who may lack resources and expertise for more

complex models (Friedman et al. 2001). The flexibility of regression trees can come at the

cost of overfitting the training set, introducing bias, and jeopardizing the generalizability and

predictive performance on unseen data. For this reason, trees must be “pruned” (Friedman

et al. 2001; Witten et al. 2011).

We estimate the optimal number of layers using the training set (i.e., observations for

which we have both nightlight and voltage data) using a five-fold cross-validation procedure.

The exercise consists of dividing the training data into five equal parts and fitting a model

with a number of layers equal to depth l using only four of the splits (out of the five). The

12



mean absolute error (MAE) of the model is then calculated on the fifth split (which was

withheld). The procedure is followed for each of the five splits and for as many layers l

desired.

We repeat the exercise 1000 times, each time randomly splitting the sample in five, and

report the average MAE for all procedures. We find that a tree with ten layers provides

optimal error minimization (see Figure SI5), and therefore the best balance between bias

and variance in the decision tree model. The ten-layer decision tree is relatively large, with

511 child nodes reflecting the suspected nonlinear and interactive nature of the learning

problem we face.

4 Estimating Electricity Reliability

We start with examining the data from ESMI monitors as we will use it to construct our

ground truth measure of reliability. First, we investigate whether the number of hours with

normal electricity has increased over time for the locations for which we have monitor data.

As illustrated on Figure 1, we find that electricity supply became more reliable over time

only for a few locations. For most, there was no substantial improvement in reliability.

To provide preliminary support for our approach, we check whether there is any clear cor-

relation between monthly aggregates of nighttime luminosity and the average hours per day

of normal electricity (averaged at the monthly level), absent additional socio-demographic

information about the villages and towns. In Figure 2, we see that, indeed, the two variables

have a nonlinear relationship, with a particularly strong and positive slope after 10 hours

per day.

Next, we train a regression tree using eight different features: log of the sum of nightlights,

area, log of population, log of the total number of households, scheduled castes population,

schedule tribes population, and literate population. We also add polynomials of the log of the

sum of nightlights up to the 9th degree. The optimal number of layers in our training data
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Figure 1: Electricity supply measured at the Prayas monitors.
Note: Each dot represents a monitor. The x-axis reports the number of hours per day with normal electricity
in the first month for which monitor data is available. The y-axis reports the slope resulting from a linear
regression of time (measured in months) on the number of hours per day with normal electricity. A positive
slope indicates that electricity became more reliable for that location over time in our sample. When the
slope is statistically significant from zero (at the 10% level), we add error bars around the dot. All points
without error bars are, therefore, not statistically significant from zero.

is estimated using five-fold cross-validation, repeated 1000 times. This results in a ten-layer

tree.

To provide more intuition regarding the performance of the model, Figure 3 describes

the error terms obtained for one specific cross-validation split. The prediction here is out-

of-sample because the model is trained using only four splits of the data, and predictions

are generated on the last split. On the left-hand graph, we plot the Prayas voltage (ground

truth) together with the predicted value against nighttime luminosity. We note that the

predictions are close to the ground truth observations. They also present a distinctly curvi-

linear relationship between nightlights and the number of hours per day with electricity:

hours increase rapidly at the low ends of nighttime luminosity and level out at higher levels.

Supplementary Figure SI6 provides a depiction of the first three layers of the model. We

find that the first decision rule assesses whether the value of the sixth polynomial of log

sum of nightlights is lower than 15327.989. If so, which is the case for 404 observations, the
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Figure 2: Relationship between nightlights and average hours per day with normal electricity.
Note: We define “normal” electricity as an electric voltage between 205 and 270 Volt. Voltage data is
sourced from 179 monitors in Uttar Pradesh installed by a non-governmental organization called Prayas.
The nightlight luminosity variable corresponds to the sum of the monthly average luminosity of all pixels
within the area of the village or town where the monitor was installed. The intensity of color in each
hexagonal bin represents the number of village-month observations that fall within the range of the shape.

tree path goes up to the next decision node, which evaluates whether the 4th polynomial is

lower than 374.239. Unsurprisingly, we see that the first three layers use the most important

features of the model: variables related to nightlights, area, schedule castes population, and

literate population.

We also find that nightlight variables are the most important ones for prediction per-

formance. Combining all the polynomials, the sum of nightlight reduces the mean absolute

error by about 64%. The following most important features are area (13%), literate popu-

lation (8%), the total number of households (5%), and the population of scheduled castes

(4%). The least important feature is the dummy variable for rural or urban, which does not

contribute at all in reducing the mean absolute error.

The right-hand graph of Figure 3 shows that the errors are close to being normally

distributed, with a mean at -0.1 and a standard deviation of 4.3. There is some left-skew in
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(a) Out-of-sample prediction versus ground
truth

(b) Distribution of prediction errors across
all splits

Figure 3: Performance of the regression tree model.
Note: We train a regression tree using eight different features, including polynomials of the log sum of
nightlights and village-level characteristics. The optimal number of layers in our training data is estimated
using five-fold cross-validation, repeated 1000 times. Figure 3a plots the out-of-sample predictions against
the ground truth values for one of the of these cross-validation splits. The prediction here is out-of-sample
because the model is trained using only four splits of the data, and predictions are generated on the last
split. Figure 3b shows that the distribution of errors (defined as the ground-truth number of hours per day
with normal voltage minus the predicted number) across all 1000 splits. The figure shows that errors are
close to being normally distributed, with a mean at -0.1 and a standard deviation of 4.3.
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the distribution, suggesting some areas have relatively high predicted reliability but actually

low hours of electricity per day. These larger errors, however, seem relatively rare. In sum,

the results suggest that the model does a relatively good job of capturing the variance in

reliability using relatively static measures of nighttime luminosity combined with structural

information about the villages.

5 Extrapolating Results to Unmonitored Regions

We leverage our predictive model of electricity reliability to provide a more comprehensive

picture of trends in reliability over time in the whole state of Uttar Pradesh, beyond areas

for which ground truth data exists. To obtain uncertainty bounds around our predictions,

we implement a bootstrap procedure, a standard method for estimating out-of-sample errors

(Friedman et al. 2001). Bootstrapping is a fundamental tool in computational statistics for

estimating error bounds in models without a closed solution for generating such measures and

without relying on strong parametric assumptions. The procedure consists in creating 1000

training samples of the same size as the original training set by sampling with replacement

from the original training sample and re-estimating the model for each bootstrapped sample.

Regression trees are then trained on each of these samples, such that we obtain 1000 different

trees, and therefore 1000 different predictions for each unit. For any particular village or

town, the spread of the bootstrap predictions is typically high, with, for example, confidence

intervals at the 90% level as wide as 10 hours (see Supplementary Figure SI9). Therefore, a

limitation of our approach is that we cannot precisely predict the reliability at any particular

location.

We can, however, predict average reliability for Uttar Pradesh as a whole with relatively

good precision. Figure 4 illustrates the distribution of the bootstrap predictions for the

average Uttar Pradesh. In Figure 4a, the 90% confidence interval is indicated by the whiskers

and spans about 1.5 hours. The distribution shifts upward as time goes by, with a particular
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shift after 2017. This possibly reflects the massive government-led efforts of electrifying

villages that used to be off-grid. Figure 4b further indicates that the change in the average

number of hours with normal electricity between 2014 and 2019 for Uttar Pradesh is between

0.2 and 1 additional hour, with 90% confidence (median: 0.6). Although positive, this

remains a very small improvement. In 2014, the median bootstrap prediction for reliability

in the average location in Uttar Pradesh corresponds to 7.55 hours of normal electricity per

day; for 2019, it increases to 8.14 hours, but that still leaves most of the hours of a day with

bad or no electricity.

(a) From 2014 to 2019
(b) Predicted changes between 2014 and 2018.

Figure 4: Uttar Pradesh average availability predictions.
Note: To obtain uncertainty bounds around our predictions, we implement a bootstrap procedure where
regression trees are trained on 1000 different bootstrap samples. Figure 4a illustrates the distribution of the
bootstrap predictions for average hours of normal electricity in Uttar Pradesh across years in the bootstrapped
estimates. The 90% confidence interval is indicated by the whiskers and spans about 1.5 hours. The
distribution shifts upward as time goes by, with a particular shift after 2017. Figure 4b indicates that the
change in the number of hours with normal electricity between 2014 and 2019 for Uttar Pradesh on average
is between 0.2 and 1 additional hour, with 90% confidence.

Although we can’t accurately predict reliability in specific locations, our approach is still

valuable for discovering general trends and patterns at the village or town level. Figure

5a maps the median predictions for the month of January 2014 for all locations in Uttar

Pradesh. Areas colored in more intense red indicate higher numbers of hours with normal

electricity per day. Throughout Uttar Pradesh, there are concentrated areas of darker red,
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indicating more than 15 hours per day of electrification. While far from 24-hour access, this

is still quite an achievement, given the extent of the electrification campaigns. Nonetheless,

we also note that these red areas are usually surrounded by larger, lighter red zones, which

indicate less than 11 hours of electricity access. There are also substantial islands of white,

indicating less than four hours of access. In these areas, households are unlikely to experience

much welfare improvement from the grid connection they received.

Comparing the predictions for 2014 and 2019, we can examine which locations have

gained the most. In Figure 5b, the shape of the cloud of points indicates that most locations

are likely to have seen a small improvement, and those which started with worse electricity

in 2014 seem to observe more progress. However, the local regression line on the graph also

reveals a high mass of locations close to zero that seem to have seen no improvement. This

stands in comparison to the scale of expansion that has taken place in terms of connections,

albeit not in reliability.

Next, we investigate the relationship between the predicted change in reliability between

2014 and 2019 and location characteristics. We find a strong, positive relationship for popula-

tion density and the total number of households, indicating that areas with larger populations

and higher density have gained the most reliability (See Supplementary Figure SI11). This

is consistent with utilities prioritizing areas where demand is high to recoup the high fixed

costs associated with infrastructure development. On the other hand, we find a relatively

small and curvilinear relationship for literacy or the proportion of the population from a

disadvantaged community.

6 Conclusion and Policy Implications

While connecting households to national electricity grids is an essential first step towards

universal electrification, improving reliability is critical to ensure that customers can benefit

from it. When poor reliability is combined with the monthly fees imposed by utilities to
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(a) Predicted Hours January 2014 (b) Predicted change from 2014 to 2019.

Figure 5: Predicted reliability of all locations in Uttar Pradesh.
Note: Figure 5a maps the median predictions for the month of January 2014 for all locations in Uttar
Pradesh. Areas colored in more intense red indicate higher numbers of hours with normal electricity per
day following natural breaks (jenks) in the data distribution. Figure 5b plots the median predicted change
for each location from 2014 to 2019 as a function of the median predicted number of hours in 2014. In
other words, for each village, we compute the median of bootstrap predictions for the entire year of 2014,
repeat the same for 2019, and then simply subtract the two median values. The shape of the cloud of points
indicates that most locations are likely to have seen a small improvement, and those which started with
worse electricity in 2014 seem to observe more progress. Yet, the local regression line also indicates that
there is a high mass of locations close to zero that seem to have seen no progress at all.

keep households connected to the grid, customers may find themselves better off by sticking

with or returning to traditional energy sources like kerosene or diesel generators, furthering

the problem of low demand that has plagued rural electrification in developing countries.

One reason the expansion of grid connections has been so successful in India is that it has

been relatively easy to set concrete goals and track progress. Similarly, monitoring reliability

will be essential to keep the issue salient in the public debate and mobilize public opinion.

Unfortunately, utilities have little incentive to release data that would document the poor

reliability of the electricity they sell. Extending electricity connections to poorer, more rural

areas have already placed their resources under strain. Publicizing problems in deliveries,

especially poorly planned load-shedding, is only likely to encourage further requests for higher

investments into areas with low purchasing power.

Incentives are also weak for politicians to enforce accurate and public reporting of power
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outages. In fact, previous studies have suggested that they strategically ignore practices

that contribute to poor reliability, like electricity theft, to improve their electoral prospects

(Baskaran et al. 2015; Min and Golden 2014). Publicly available data from official sources is

therefore often unavailable or not reliable. Our results provide strong evidence for the utility

of openly available and easily accessible remote sensing tools to monitor electricity reliability.

This, in turn, can provide international organizations, domestic activists, and NGOs with

critical information to advocate for better electricity supply.

This paper, in particular, shows how much progress has been made but also how much

still remains to be seen regarding the quality of electricity. Although our predictive model

provides comforting evidence of its reliability and performance through cross-validation and

bootstrapping, we shall mention a few important caveats. First, for areas without ground

truth data, one cannot guarantee that results are accurate. Moreover, it is not possible to

exclude the possibility that the observations used to train the model are not representative

of the rest of Uttar Pradesh, introducing some bias and jeopardizing the generalization we

are attempting.

Future work could extend the approach used in this paper in several ways. First, to

the extent that ground truth data is collected in other areas of Uttar Pradesh, the training

sample would increase, which could lead to more precise predictions at the location level.

Second, additional ground-truth data also offer the opportunity to implement an actual out-

of-sample test and help confirm (or infirm) the usefulness of relatively highly aggregated

nighttime luminosity data to provide guidance on electricity reliability. Third, while this

paper uses data aggregates that are more easily accessed, stored and analyzed by resource-

constrained actors, advances in access to more fine-grained daily composites may lead to

further advancements.

Similarly, extending the exercise to other countries can help validate or invalidate the

approach in a broader set of contexts. A systematic, more representative placement of
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monitors over large areas by governments or NGOs would greatly assist in leveraging existing

data tools for monitoring electricity reliability, as well as providing directly useful data

themselves. Since many developing countries are rapidly expanding their electricity supply

and facing the same difficulties with monitoring reliability, satellite data may provide a key

element in monitoring access.

Future studies will likely benefit from using various tools and data, such as official data,

surveys, and satellite imagery. This paper contributes by documenting the performance of

one such tool using easily accessible data and a transparent method of analysis. Therefore,

it provides some hope that, despite the difficulties in measuring electricity reliability, NGOs

and researchers can develop monitoring tools to inform policymaking and hold government

and utilities accountable at a reasonably low cost in terms of resources and expertise. Such

measurement is a first step towards creating incentive for greater reliability, even in lower

income areas, and realizing the full potential of national electrification.
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